
Diploma Thesis

A Thin
Web Application Framework
based on Server-side JavaScript

Jan Varwig

July 20th, 2009

Supervisor: Prof. Dr. Clemens Cap
Lehrstuhl für Informations- und Kommunikationsdienste
Fakultät für Informatik und Elektrotechnik
Universität Rostock

2nd Examiner: Prof. Dr. Dietmar Jannach
Lehrstuhl für Dienstleistungsinformatik
Fakultät für Informatik
Technische Universität Dortmund

Contents

1 Motivation 1
1.1 A Short History of the Web 1
1.2 Current Problems in Web Development 3

1.2.1 Heterogenous Languages 4
1.2.2 Redundancy in Code 5
1.2.3 Glue Code . 5
1.2.4 Object-Relational Mapping 6

1.3 Use Cases . 7
1.3.1 Model Validation . 7
1.3.2 Data Transformation 8
1.3.3 Exposure of Objects Through APIs 9
1.3.4 Dynamic Object Properties 9
1.3.5 Storage and Retrieval of Compound Objects 10

1.4 Goals . 11
1.4.1 A Single Language 11
1.4.2 Code Reuse between Server and Client 11
1.4.3 Elimination of Glue Code 11
1.4.4 Tight Integration of a JSON Database 12

1.5 Existing Single-Language Frameworks 12
1.6 Key Ideas . 13

1.6.1 A Design Based on JavaScript 13
1.6.2 Key Ideas Put to Work 15

2 Background 19
2.1 Existing Approaches to Web Frameworks 19

2.1.1 Request-/Action-Based MVC 19
2.1.2 Component Based 20
2.1.3 Free Form . 21

2.2 Web-Applications vs. Web-Services 21
2.3 JavaScript . 22
2.4 Changes in Recent Years . 24

2.4.1 Web 2.0 and AJAX 24
2.4.2 JavaScript Engines 25
2.4.3 Approaches to Database Systems 26

2.5 Protocols for Web Services 27
2.5.1 SOAP . 28
2.5.2 REST . 28
2.5.3 XML-RPC / JSON-RPC 29

2.6 Existing JavaScript Based Frameworks 29

iii

Contents

2.6.1 Helma . 29
2.6.2 Persevere . 30
2.6.3 Aptana Jaxer . 31
2.6.4 Others . 31

3 Design 35
3.1 Key Ideas . 35

3.1.1 Avoiding Data Transformation and Lightweight Cre-
ation of Models . 35

3.1.2 A Thin Controller and Uniform Models 36
3.1.3 Code Sharing, Code Splitting and Delegation 39

3.2 Object Infrastructure Design 41
3.2.1 Controllers . 41
3.2.2 Models . 43

4 Implementation 47
4.1 Choice of Back-End Software 47

4.1.1 JSON Databases Compared 47
4.1.2 The ServerJS Group 49
4.1.3 JavaScript Engines Compared 50

4.2 Client-Server Scenarios . 53
4.2.1 Server-side . 54
4.2.2 Client-Side . 57
4.2.3 Unimplemented Scenarios 59

4.3 Implementation of the Server-side 60
4.3.1 The Underlying Platform: Rhino, Narwhal and Jack 61
4.3.2 Dispatcher . 63
4.3.3 Models . 64
4.3.4 Controllers . 68

4.4 Implementation of the Client-side 68
4.4.1 Client-side Module Loading 69
4.4.2 Splitting . 69
4.4.3 Support for Nested Structures 73
4.4.4 Automated Delegation 74
4.4.5 Example Application 74

5 Evaluation 75
5.1 Goals and Design . 75

5.1.1 A Single Language 76
5.1.2 Code-Reuse Between Server and Client 76
5.1.3 Elimination of Glue Code 77
5.1.4 Tight Integration of a JSON Database 78

5.2 Use Cases Revisited . 78
5.2.1 Model Validation . 79
5.2.2 Data Transformation 79
5.2.3 Exposure of Objects Through APIs 80
5.2.4 Dynamic Object Properties 81
5.2.5 Storage and Retrieval of Compound Objects 81

iv

Contents

5.3 General Architecture Evaluation 82
5.4 Perspectives and Problems 83

5.4.1 Remaining Tasks . 84
5.4.2 Future Work . 86

6 Conclusion 89

A Kupo Information 91
A.1 Requirements . 91
A.2 Installation . 91
A.3 Startup . 92
A.4 Tests . 93
A.5 License . 93

Bibliography 102

v

Contents

vi

Preface

This thesis deals with a subject that is an important problem in modern,
practical web application development. It is, however, only sparsely recog-
nized in computer science.

Although a lot of sound and intelligent publications and discussions around
the topic exist, they often occur outside academically accepted platforms.
This leads to a lack of citable sources from established journals and pro-
ceedings, since many relevant or interesting publications take the form of
articles in online magazines, weblogs or knowledge bases.

This thesis uses and references technologies that are very young and not well
established yet. Unlike software systems devised at universities, which are
usually introduced at scientific conferences or in scientific journals, most of
these technologies were created in commercial or open-source environments
and are documented informally on the web. As an example, even the initial
specifications of established technologies like HTTP and HTML were never
formally published.

Ignoring the existence of these sources would drastically inhibit exploration
and innovation in an important area of modern software development. It
was therefore decided to use sources for this thesis even if they have not
been formally published. To account for the volatile nature of the web, cited
sources that are referenced as URLs only, are attached to this thesis, stored
on a DVD-ROM in HTML or PDF format.

The fact that the subject has its roots in web application development
practice leads to an emphasis on the prototype implementation described
in chapter 4. The practical aspects of this thesis are necessary, however, to
illustrate how the presented concepts work together.

vii

Contents

viii

1
Chapter 1

Motivation

Recent developments in JavaScript interpreter technology are opening up
new possibilities to use the language for server-side web development.

In this thesis, the design and implementation of a web application frame-
work based on server-side JavaScript will be presented that provides a new
approach to web application architecture on a lean stack of proven web
technologies. This design aims to provide an answer to current problems in
web development.

This chapter provides an overview of these problems. Afterwards, the design
for a new framework, derived from these problems, will be presented.

1.1 A Short History of the Web

Before the World Wide Web reached its current level of popularity, it began
its life in the beginning of the 90s at CERN as a minor protocol alongside
the older eMail system, the Usenet, Gopher, and FTP, intended for the
exchange of documents between scientists. The commercialization of the
Gopher system in 1993 led to a rise of popularity for the World Wide Web
as a method of distributing information [Yen93].

In its first published version 0.9, the HTTP protocol (HyperText Transfer
Protocol) already mentioned a way for “hypertext nodes” (entities corre-
sponding to todays web pages or resources) to provide dynamic content,
based on a string appended to the URL for querying document indexes.
The accompanying first version of HTML (HyperText Markup Language)
did not specify forms; instead, the <ISINDEX> tag was used to indicate that
a document was an index document, leaving it up to the browser to gener-
ate the appended string [W3C92]. The HTML+ standard first mentioned
form elements for HTML documents and the manual extension of URLs

1

1.1. A SHORT HISTORY OF THE WEB

with search strings to enable a more varied way of generating queries to be
send to a server [Rag93].

In the mid-nineties, several important technological developments and a
huge increase in public interest moved the web beyond being a simple de-
livery platform for static documents, towards the dynamic landscape of
applications and services it has become since:

In 1995, JavaScript was introduced to the public when Netscape released
its Navigator 2.0 Browser [Cha01]. The Common Gateway Interface (CGI)
[W3C99] was specified, and PHP and Perl 5 were released. CGI, Perl
and PHP made the generation of web pages on the server more dynamic,
while JavaScript made the display and interaction of generated pages in the
browser more dynamic. The MySQL database was released in Version 1.0
and quickly became a popular for sites driven by Perl and PHP. In 1996,
the HTTP/1.0 protocol was published, and introduced the POST method,
enabling clients to not only query data, but send data to the server as well
[BLFN96]. In the late 1990s, public attention to the internet grew and more
and more businesses went online.

The next leap happened in the early 2000s when again several important
technologies appeared simultaneously. In 1999, Microsoft introduced the
XMLHttpRequest API in Internet Explorer 5 as a way to exchange data
with a server without reloading the entire displayed page. By 2005, Opera,
Mozilla Firefox and Safari all had adopted the API, enabling web developers
to develop website interaction in a whole new way [Ope09, Moz05, App05].
One of the most prominent early uses of this technology was Google’s Gmail
service.1 During 2004 and 2005 the terms AJAX and Web 2.0 were coined
[Gar05, O’R05]. AJAX, the abbreviation for Asynchronous JavaScript and
XML, nicely summarizes what the new kind of web applications had in
common: the use of asynchronous JavaScript (implemented by the XML-
HttpRequest API) on the one hand and XML (Extensible Markup Lan-
guage) or other forms of structured data on the other hand.

The use of structured and well-formatted data enabled the building of web
services, targeting machines instead of human users. Protocols like XML-
RPC and SOAP were established (see Section 2.5), turning the web into an
interactive network of services communicating with each other [ACKM04,
RR07]. The development of these sites and services was widespread and
complicated enough to nourish a large open-source ecosystem of frame-
works and development tools for both the client- and server-side of web
applications.

The rise in popularity of the Web 2.0 raised the need for rapid, yet struc-
tured development platforms, something neither the existing enterprise
frameworks (too complex) or custom scripting (not structured and pow-

1http://www.gmail.com/

2

http://www.gmail.com/

1.2. CURRENT PROBLEMS IN WEB DEVELOPMENT

erful enough) could provide. Newly developed frameworks, written in dy-
namic, interpreted languages, were designed to address these issues, the
most prominent examples being the Zend Framework2 (PHP), Django3

(Python) and Ruby on Rails4 (Ruby). At the same time, client-side Java-
Script frameworks were coming up (or gaining new attention) that made it
easier to use the power of browser scripting. These frameworks provide sim-
ple APIs around the most used features and an abstraction layer from the
lower level APIs of the browsers, whose incompatibility in certain details
(like event propagation and DOM navigation) prevented JavaScript from
being used to its full potential in the past. Popular examples are jQuery,5

Prototype,6 or mootools7.

These frameworks and techniques made way for web applications that feel
like desktop applications, with fluid user interaction in the browser, commu-
nicating with the server through remote procedure calls (RPC) or REST
interfaces (Representational State Transfer, see Section 2.5), in the same
way web services exchange information, and enable the user to create and
edit complex information, no longer limited to simple database queries.

1.2 Current Problems in Web Development

Although the boost in attention to web development in recent years made
the tools and frameworks that software developers rely on easier to work
with, a few problems still persist. A common cause for these problems is,
that the core protocols of the web and many of the web’s components were
intended for simple content delivery and not for the complex communication
requirements of an application platform.

The development of the components, databases, JavaScript, XML and HTTP,
was disjoint and methods for cooperation between them were developed by
need during the boom of the web in the late nineties.

Although many view this organic growth as one of the web’s strengths (see
[RR07]), it also has severe drawbacks like

• Isolated applications due to a lack of standards. Although many prob-
lems in web development are reoccurring in almost identical forms
(e.g. authentication systems), developers solving these problems find
themselves reinventing the wheel over and over.

2http://framework.zend.com/
3http://www.djangoproject.com/
4http://www.rubyonrails.com/
5http://jquery.com/
6http://prototypejs.org/
7http://mootools.net/

3

http://framework.zend.com/
http://www.djangoproject.com/
http://www.rubyonrails.com/
http://jquery.com/
http://prototypejs.org/
http://mootools.net/

1.2. CURRENT PROBLEMS IN WEB DEVELOPMENT

• As a result, many solutions are incompatible with each other, exac-
erbating the problem further.

• Where standards exist, their implementations are not always complete
or consistent. A lot of the standards in web development, most im-
portantly CSS (Cascading Style Sheets), the DOM (Document Object
Model) and their JavaScript APIs, lack reference implementations.
This led browser vendors to come up with their own, incompatible
solutions to unclear details. These incompatibilities became one of
the largest problems in web development [Koc09].

• The high overhead of opening stateless HTTP connections was no
problem when the web was used to retrieve simple files, but became
an issue when web applications and web services began exchanging
data in smaller packets with higher frequencies [Zyp08a].

Many tools have been combined over the years to enhance the capabilities
of servers and clients and to circumvent these drawbacks of the web ar-
chitecture and the HTTP protocol. A modern web application includes a
web server, an application server, the server-side part of the application, a
database, gateways from its back-end to other services, the HTTP protocol,
a scriptable browser, markup languages like HTML and XML and possibly
even Flash or Java applets.

This mix of technologies promotes the problems outlined in the following
sections.

1.2.1 Heterogenous Languages

The different parts that make up a web application have to communicate
with each other, but unlike the stacks that developers of desktop appli-
cations are usually using (like the Java class library, the Microsoft .NET
environment or the Qt library), these parts are all developed in different
languages:

• Documents are written or generated in HTML /XML and styled with
CSS and / or XSLT.

• JavaScript is used to give the application a more sophisticated inter-
face.

• SQL is used to access the database.

• The server-side part of the application is written in Java, Python,
Ruby, PHP, ASP or any other programming language.

• Transmitting data from the server to the client requires knowledge
about the details of the HTTP protocol for most nontrivial cases.

4

1.2. CURRENT PROBLEMS IN WEB DEVELOPMENT

The heterogenous nature of the web has been identified as a problem for
web service interoperability in [CNW01].

Although this mix of technologies is a lot to learn and keep in mind, for
application development it is more of an inconvenience than a fundamental
problem.

However, it leads to more serious issues.

1.2.2 Redundancy in Code

The use of different languages in the layers of an application means that
code can not be shared between these layers. This leads to redundancy
and potential duplication of (sometimes critical) parts of the application.
A prominent example for this problem is that of data validation [Lho06a].

Web applications usually accept data from the user through HTML forms.
To ensure that the entered data is valid, it has to pass checks for consistency,
value ranges or adherence to other criteria. If these validations are imple-
mented multiple times, effort has to be spent to ensure all implementations
are semantically equal.

1.2.3 Glue Code

Code that is needed to combine loosely coupled components together to
form a working system is commonly referred to as glue code [DGHK05].
Glue Code does not carry meaning in regard to the problem an application
is designed to solve, yet has to be written to make parts of the application
interoperate.

Approaches exist to prevent developers from having to write glue code
and to deal with the associated problems. These approaches either in-
volve reducing the flexibility of the components involved (thus reducing
the amount of necessary glue code) or to generate glue code automatically
[vGB01, DGHK05].

Glue code is usually a symptom of a language that lacks expressive abilities
or mechanisms for reflection and self-adjusting but can also be a result of
a library or framework whose design is not completely congruent with the
way it is actually used.

Glue code adds visual and structural “noise” to the program code, making
it more laborious to write, harder to read, and bugs more difficult to dis-
cover. In [vGB01], Bosch and Gurp point out that “flexibility comes at the
price of increased complexity” and that “glue code tying together the small

5

1.2. CURRENT PROBLEMS IN WEB DEVELOPMENT

components is not reusable”. A good example for glue code in web devel-
opment are the extensive configuration files needed to set up the Hibernate
ORM framework [KBA+09].

1.2.4 Object-Relational Mapping

The term Object-Relational Mapping (ORM) describes the mapping of
object-oriented data structures to tables of a relational database system
(RDBMS) [Fow02]. Although object-orientation has been a dominant para-
digm in software engineering for many years, the use of relational databases
is still very common for the implementation of persistence layers in web de-
velopment [Bar01]. The fundamental differences between the paradigms of
object-oriented and relational technologies that make ORM necessary are
called the Object-Relational Impedance Mismatch [IBNW09].

There is a wide selection of tools and frameworks available that imple-
ment ORM, such as Hibernate (Java), ADO .NET (.NET), SQLAlchemy
(Python) or ActiveRecord (Ruby). Despite the existence of these tools,
ORM is still considered a hard, multi-faceted problem whose solutions are
complicated, error-prone and full of compromises.

Good examples for this are inheritance and associations. Both are essential
features of object-orientation, can not be easily represented in relational
databases and have to be modeled explicitly [New06, IBNW09]. Mapping
associations to relational schemas can be used well to illustrate the problems
caused by the impedance mismatch.

One-to-many associations in object graphs are usually formed by pointers
from a collection to its members, while the members themselves can be
completely oblivious to this link. In relational databases, these links run
in the opposite direction: Members of a collection contain a pointer to the
collection and can not be members of other collections at the same time
without modifications to the schema (Case a in Fig. 1.1).

Another issue with ORM is a result of the modeling difficulties. Although
problems in data modeling can be worked around with some effort, these
workarounds can lead to serious degradation of database performance. This
degradation can be illustrated in the given example: The usual procedure to
solve the problem described in the previous paragraph is to use a third table
to store the associations (Case b in Fig. 1.1). Now, the members can easily
be associated with multiple collections but looking up these associations
involves joins over three tables. It becomes possible for the association table
to contain references to deleted members or collections, an inconsistency
that can be avoided reliably only by additional constraint-checking upon
each update to one of the three tables [ME92, SMA+07].

6

1.3. USE CASES

Lastly, two of the benefits of relational data models, namely non-redundant
data through normalized schemas and arbitrary queries containing lots of
joins, are not an issue in abstract relational logic but infeasible in common
practical scenarios when it comes to processing large amounts of data with
reasonable performance. In [Atw08], Jeff Atwood provides experience and
references descriptions of several architectures of large web applications that
used systematic denormalization and introduced redundancy to be able to
process large datasets (YouTube [Do07] and Flickr [O’R06], among others).

In [New06] Ted Neward gives a comprehensive overview of the problems
accompanying object-relational mapping.

3

attr_mattr_n

2
1
id attr

7 2

a_id
1

6
5

2

id

3

attr_mattr_n

2
1
id

7

attr_yattr_x

6
5
id

Table A Table B

b)

a)

5
2
1

3

b_ida_id

2
7
7
6

Figure 1.1: 1:n and n:n associations in a relational database. a) A 1:n relation where
multiple records in table B are associated with a single record in table A. b) To enable
n:n associations from multiple records in B to multiple records in A, an additional table
storing the associations is used.

1.3 Use Cases

The abstract problems outlined in the previous section can become real is-
sues in multiple common use cases. Some exemplary issues will be examined
in this section.

1.3.1 Model Validation

Problems: Redundant implementations

Web applications or services accepting data from untrusted sources have to
ensure that no invalid data enters the system. In MVC frameworks (Model-
View-Controller, see Section 2.1.1), this is usually done in the model layer
by defining valid value ranges for the models’ properties. These valida-
tions are checked before a model instance is persisted to the database. In

7

1.3. USE CASES

web applications with rich, JavaScript-driven client interfaces, scenarios are
imaginable in which validations have to be implemented multiple times.

One validation might exist, written in JavaScript, to provide immediate
feedback to the user while he is editing a form in the browser and prevent
him from submitting the form until it is valid. A server-side validation has
to be implemented in the language of the application server to validate data
from the client during request processing. This step is mandatory for al-
most all applications with untrusted users, otherwise malicious clients could
easily pass in invalid data. At last, the database used in the application’s
persistence layer might apply constraints to ensure integrity at the lowest
level.

Three implementations of the same ruleset result in three times the effort
required to maintain, develop and test the ruleset. Most importantly, it
becomes very easy to introduce bugs into an application if differences in
the implementations sneak in.

1.3.2 Data Transformation

Problems: Heterogenous languages, object-relational mapping, glue code
required for serialization, and conversion of data

In traditional web application stacks, data passes through many stations
on its way from the database to the DOM in the browser, each step requir-
ing a reformatting or re-encoding. Data in a typical application built with
MySQL and PHP might traverse the following steps (example taken from
[Cap08]):

1. Through the query, binary data is fetched from the database via a
socket connection.

2. The PHP MySQL module transforms the raw data into a MySQL
rowset.

3. The rows in the rowset are made available to PHP as arrays by the
MySQL module.

4. The array is cast into a PHP object, processed by the controller and
passed to the renderer.

5. The renderer transforms the object to plaintext, HTML or JSON
(JavaScript Object Notation) before it is sent to the client.

6. The client parses the stream coming from the server and constructs
the DOM or other JavaScript objects from it.

8

1.3. USE CASES

This traversal brings with it multiple problems [Cap08]. Each of these steps
involves expensive string processing, most of it on the server-side, leading to
bad scalability. The many interfaces involved cause impedance mismatches
and offer potential weak spots for injection attacks.

1.3.3 Exposure of Objects Through APIs

Problems: Glue Code

In an MVC based web application framework, exposing an application’s
models to clients as a service requires writing controller actions that pass
HTTP requests to the models and their responses back to the client. In
an application that provides strict rules and paradigms for the behavior
of models these actions will likely look extremely similar for all models.
Without special support for exposing the models, writing similar adapter
actions over and over again can be necessary to provide a web service.
With web applications becoming more and more similar to web services in
structure, this problem applies to applications as well.

In practice, this problem occurred in the Ruby on Rails web development
community. With the advent of REST support in Rails 1.2 and Rails’ strict
guidelines for building RESTful controllers, developers began to notice ex-
treme similarities between their controllers. As a response, a popular plugin
for Rails was created that enabled controllers to be mapped to models au-
tomatically, dynamically generating the common RESTful actions while
allowing aspects specific to individual models/controllers to be defined in
a concise way [Gol09].

1.3.4 Dynamic Object Properties

Problems: Object-relational mapping, glue code required for serialization,
and conversion of data

With client-side user interfaces becoming much more sophisticated than
the static HTML forms the web was limited to in its early days, the data
structures edited through such interfaces become more complicated as well.

Static forms map nicely to the static set of columns in a relational database
table. When a form adjusts itself using JavaScript as the user interacts with
it, or when a custom interface creates a dynamic data structure to send to
the server, this mapping becomes a hindrance.

For example, an application that includes a contact database assigns multi-
ple telephone numbers to a contact, each consisting of a number and a type
field. Contacts can have any amount of telephone numbers. The intuitive

9

1.3. USE CASES

and object-oriented way to store these numbers would be to save them in
an array in the contact object. A conventional web application, using a
relational database, could create such a contact object on the client in Ja-
vaScript. To send it to the server, it would have to be serialized to JSON or
XML (in favorable cases) or into a HTTP querystring. Storing the contact
to the database on the server would require the telephone number to be
separated from the contact and stored into a separate table together with
foreign keys to form the association.

The described case has been kept relatively simple and could easily be ex-
tended. To illustrate the problems with static schemas even better, the tele-
phone numbers could be extended with additional information, requiring
a schema adjustment in the database and an update of all stored num-
bers. Nested objects of arbitrary depth (and maybe even arbitrary type)
become very hard to map to a relational database and to convert between
representations.

1.3.5 Storage and Retrieval of Compound Objects

Problems: Object-relational mapping, glue code required for serialization
and conversion of data, glue code required for object traversal, and depen-
dency checking.

This example is closely related to the previous one. In the last paragraph
of the Dynamic Object Properties example, the possibility of arbitrarily
nested objects was introduced. But besides the issue of mapping it to a
static relational schema, such a structure brings another problem.

It might not always be feasible to store a nested object as a single entity. The
parts an object is composed of might not belong to that object exclusively;
other objects could reference the parts as well. These parts should be saved
in a collection of their own, so they can be addressed independently. If
these independent object correspond to models in the application, they
will likely have their own validations. Also, the associations between these
independent objects have to be tracked explicitly through foreign keys.

For these reasons, saving compound object structures involving associations
can be a complicated task. All objects have to be validated, the foreign keys
forming the associations have to be properly set, and the objects have to be
saved to the database. Complicated structures can introduce dependency
problems into these steps: Before it is saved to the database, a new object
usually does not have an ID that could be stored in another object as a
foreign key. Circular references might prevent a group of objects from vali-
dating (if one object’s validity depends on the validity of of its associations).

10

1.4. GOALS

1.4 Goals

The problems presented in Section 1.2 and illustrated in 1.3 lead to four
major goals aiming to solve them in the implementation of a new framework
(see Table 1.1).

Problem Goal
Heterogenous languages A single language
Redundancy in code Code reuse between server and silent
Glue code Elimination of glue code
Object-relational mapping Tight integration of a JSON database

Table 1.1: The identified problems and the formulated goals. Each goal can be related
directly to one motivating problem.

1.4.1 A Single Language

All parts of the framework should be written in JavaScript. This includes
the server-side part, the client-side part and especially the persistence layer
which should be implemented using one of the available open-source JSON-
based document databases (introduced in Section 2.4.3).

Using only JavaScript is, in part, a precondition for the other goals, just
like the heterogeneity of languages is a cause for the other problems.

1.4.2 Code Reuse between Server and Client

It must be possible to specify the classes and models in such a way, that
they can be used on both the server and the client. Where different im-
plementations are required, the developer should be able to specify these
differences as narrowly as possible.

This requires a highly modular structure in the models and efficient use of
JavaScript’s open prototypes that allow parts of their implementation to
be changed after they have been created.

1.4.3 Elimination of Glue Code

The developer should be able to concentrate on implementing the core
structure and functionality of the application’s business models and the
flow of user interaction without wasting much energy on maintaining the
application infrastructure.

11

1.5. EXISTING SINGLE-LANGUAGE FRAMEWORKS

This can be achieved by a largely declarative style of programming, by ex-
ploiting JavaScript’s ability to treat functions as first class types (enabling
to flexibly add, remove or apply them to models) and by providing strict
standards and conventions that meet the developer’s actual requirements.
These conventions are effective in two steps. Establishing them in the first
place relieves the developer from having to decide on conventions of his
own. Working with the provided conventions, he can develop the applica-
tion without having to spend much time on configuring the framework’s
parts to interoperate.

1.4.4 Tight Integration of a JSON Database

By integrating the framework with one of the several open-source JSON-
based document databases, issues related to object-relational mapping can
be avoided. An ideal integration would involve that the business models in
the application can be transparently stored and loaded from the database
without using a special query language.

1.5 Existing Single-Language Frameworks

The wish to unify web development languages is not new. Two large soft-
ware products that allow developers to write web applications using a single
language are Microsoft ASP.NET and the Google Web Toolkit (GWT).

Both let the developer write business and interface logic in Java (for GWT)
or one of the .NET languages (C#, F#, C++, Visual Basic for ASP). The
written models, interfaces and controller logic are then compiled to HTML
and JavaScript or executed and interpreted at runtime [Goo09a, Esp08].
This approach adds an additional layer of computation and complexity to
a web development that can become too expensive for many applications.

Ruby on Rails, released in 2004, initiated a paradigm shift in web develop-
ment away from complex frameworks [Dum05]. Three fundamental princi-
ples can be observed in Rails’ design:

• The use of a flexible, dynamic, interpreted language to allow for pow-
erful development patterns that provide a very succinct programming
style.

• Being opinionated about how certain common tasks are performed
best. Whereas frameworks before tried to be everything for every-
one, provided they were configured correctly, Rails offered one way
and discouraged (but not prohibited) developers from doing things
differently.

12

1.6. KEY IDEAS

• Embracing web standards. Rails made the use of REST principles
extremely popular and found elegant ways to use the architecture of
the world wide web and the related technologies to its advantage.

Web frameworks had previously accumulated complexity that made them
unsuitable for many projects. The tremendous success of Rails are a strong
hint that the principles behind it’s leaner attitude were valid.

Inspired by Rails’ success, many frameworks, based on similar principles,
have been developed in other languages, but few languages are as flexible as
Ruby and allow imitating essential features of Rails. JavaScript is one of the
languages whose flexibility is on par with Ruby’s [Cro08], but JavaScript
was never used outside of web browsers, did not have a standard library,
or possibilities to interact with an underlying operating system.

Today, the availability of fast, standalone JavaScript interpreters, upcoming
standard libraries for JavaScript and JSON databases opens up the possi-
bility to revisit and implement the single-language approach with respect
to these modern paradigms.

1.6 Key Ideas

Using the advantages of JavaScript, its dynamic features and its availability
in the browser, to realize the goals formulated in the previous sections leads
to the following design ideas.

1.6.1 A Design Based on JavaScript

For the first time, it is possible to develop all aspects of a web application in
the same language due to the availability of document oriented databases
(see Section 2.4.3) that are using JavaScript as a query language and JSON
(JavaScript Object Notation [Cro06]) for storing documents. SQL is not
used anymore.

The consistent use of JavaScript and the JSON format makes it possible to
remove most of the data reformatting steps between database and client.
For the implementation of the framework, this effect is exploited as much
as possible, leading to a new approach towards the role of the control layer.

In traditional MVC based web application frameworks (see Section 2.1.1),
the control layer is central to the application (left side of Fig. 1.2). It reads
and writes data from and to the persistence layer, creates model instances
from this data, processes these instances, hands them over to the view layer
for rendering and finally sends the rendered representation to the browser.

13

1.6. KEY IDEAS

The browser then performs client-side processing, by simple forms or com-
plex interfaces based on JavaScript (example: Google Maps8) and sends the
data back to to the control layer where it is interpreted, transformed into
model instances and processed again. In addition to data flow and pro-
cessing, the control layer also deals with the application’s control flow, by
rendering the interface and redirecting clients, and aspects like authentica-
tion and session management.

Through the use of JavaScript, the number of the control layer’s tasks on
the server can be greatly reduced by shifting most of them to the client.
This primarily affects the application’s control flow and rendering which
can be managed by the browser through JavaScript and dynamic HTML.

In conventional web applications, user interface aspects are distributed over
server and client. The client is responsible primarily for accepting user
interface events. These are processed and communicated to the server where
they trigger rendering and redirection. By moving these control flow tasks
to the client, the traditional control layer is decomposed into two parts.

The layer containing control flow management is labeled logic layer to set
it apart from the old concept the control layer. The main difference here
lies in the location the code is executed at: the client instead of the server.
This, however, opens up new possibilities for building control flow manage-
ment. Controllers can now directly access user interface events. Roundtrips
to the server are not necessary anymore. A few web applications like the
aforementioned Google Maps already work this way.

The responsibilities that remain on the server form the adapter layer (see
Fig. 1.2). What remains in this layer are access control, session management
and code that can not be executed on the client (for security or bandwidth
reasons, for example). This way, the adapter layer becomes a very thin in-
terface between the application in the browser and the persistence layer,
only passing data through by default. To simplify its interface, communi-
cation with the adapter layer is performed through JSON-RPC requests
only (see Section 2.5.3). For cases that require data flow manipulation, the
adapter layer allows for callbacks containing application-specific code to be
executed at certain points during request processing.

Implementing a client/server split as described is a theoretical possibility
regardless of the language used on the server, but it becomes practical
only with JavaScript. Code for the models can now run on both the client
and the server whereas, with other languages, an entire model or certain
aspects of a model would have to be implemented twice, in the server-side
programming language and JavaScript.

Using the same code on both the server and the client further enables
transparent server-side execution of model methods, by replacing the client-

8http://maps.google.com/

14

http://maps.google.com/

1.6. KEY IDEAS

side version of methods with delegates that forward calls to the server and
return the server’s response.

The flexible nature of JavaScript’s properties pattern [Fow97] allows cus-
tomizing models in a declarative manner and let the framework process
these declarations either by interpreting or by using them to generate meth-
ods on the models.

Both code sharing and a declarative interface for defining a model’s struc-
ture and behavior are expected to greatly reduce the amount of code an
application developer has to write. By setting standards for the design
of model interfaces and encouraging adherence to these standards, uniform
interface patterns are established in the framework. These established stan-
dards free the developer from having to come up with a design of his own,
allowing him to keep focused on the core problems of the application.

View

Controller

Model

Server

Client

Persistence

View

Model

Persistence

(Adapter)

Model

Logic

Figure 1.2: Layering of web frameworks. A traditional MVC stack with an additional
persistence aspect is shown on the left. The right hand side illustrates the structure
the new framework is based on.

1.6.2 Key Ideas Put to Work

Chapter 3 describes a design derived from these ideas. To improve under-
standing of the description, this section will provide a lowlevel overview of
the steps and facilities involved in request processing. Although presenting
the low-level implementation and the high-level ideas in this reverse order
is unusual, it is necessary for putting the ideas presented later in context.

15

1.6. KEY IDEAS

Client

Server running in JVM

Javascript Framework

Jack JSGI Processing
Raw HTTP Request -> JSGI env

ResourceController(model)

instantiate

process(request)

handle(env)

POST /projects/<id>
{method: "update", name: "Kupo"}

Target
(model class
or instance)

JSON-RPC request

methodName
parameters

rpc call

result/error

afterProcess

JSON-RPC response/
JSON-RPC error

Jack JSGI Processing
JSGI response -> Raw HTTP response

beforeProcess

determine and instantiate

Dispatcher
JSGI env -> Jack Request

create from request

[200, {"Content-Type": "application/json"}, ["{id: ###, result: {...} }"]]

{id: ###, result: {...} }

data flow/method call instantiation control flow
inside ResourceController

Figure 1.3: A schema showing how the facilities of the framework process an incom-
ing request from a client.

16

1.6. KEY IDEAS

Request Processing

Figure 1.3 shows how a request is processed in the framework. The request
is received by the webserver hosting the framework. It passes the JSGI
interface, is turned into a JSGI environment object (similar in structure
and purpose to a CGI environment, see Jack/JSGI on page 62) and passed
to the framework’s dispatcher for handling.

The dispatcher analyzes the request URL by splitting it at the path separa-
tors and comparing the first segment to the existing models. If a matching
model is found, it becomes the target for the resource controller which im-
plements the adapter layer described on page 13. The dispatcher creates an
instance of the resource controller by passing the model to its constructor.

The resource controller interprets the incoming request and creates JSON-
RPC request object from it. The resource controller continues request an-
alyzation by examining the request method and the the second segment of
the URL. It determines whether the model class or a specific instance will
become the target of the request.

If a model contains callbacks for data flow manipulation (beforeProcess/
afterProcess), these callbacks are executed before and/or after the actual
method call. Next, the requested method is executed on the target, the
result wrapped in a JSON-RPC response and sent back to the client.

Model Definition

Listing 1.1 shows an example model definition. The first three lines include
external modules (see Section 4.3.1) that are needed for the definition.
The new Model(<name>, <spec>) constructor creates a new model with a
given name and a spec object (short for specialization or specification). The
spec object contains certain predefined properties that are interpreted or
executed at different stages of the model’s life cycle to produce the desired
behavior. After the Project model is created, the completeAll class method
is defined on it.

17

1.6. KEY IDEAS

Listing 1.1 An example model definition
var Model = require(’kupo/model’);
var Associations = require(’kupo/model/associations’);
var Task = require(’./task.js’);

var Project = new Model(’project’,{
instance: {
methods: {complete : function(){
this.update(’completed’, true);

}}
},
callables: [’completeAll’],
associations: {
"tasks" : Associations.hasMany(Task)

}
});

Project.completeAll = function() {
// ...

}

18

2
Chapter 2

Background

As outlined in Section 1.1, the World Wide Web as in its current form is
the result of more than a decade of evolution. In this chapter, the web’s
history is explored in more detail to provide the context against which the
new framework is designed.

2.1 Existing Approaches to Web Frameworks

Since the early days of the Web, server-side frameworks existed to sup-
port developers in creating dynamic websites. These frameworks can be
separated into several categories by the paradigms that their architectures
follow.

2.1.1 Request-/Action-Based MVC

The Model-View-Controller pattern is one of the most widespread and most
important architectural patterns in application design. Applications adher-
ing to MVC separate their logic into three independent components: The
models encapsulate domain logic and data. The controller is responsible for
the application’s control flow. The views render data [Bur87].

This separation maps nicely to the components of a web application: The
models are the business objects that often reside in a database, the views
are HTML pages sent to the client, and the controller is the application
server that processes requests by initiating actions on domain models and
rendering of response pages.

Because of this nice match, many web application frameworks follow this
pattern. An especially popular form of MVC web frameworks is the archi-

19

2.1. EXISTING APPROACHES TO WEB FRAMEWORKS

tecture shared by Ruby on Rails, Django, Struts1 and Spring,2 which can be
described as Full Stack MVC, encompassing integrated parts for every level
of the application that have been designed to work well together. These
frameworks are action-based. Incoming HTTP requests are mapped to ac-
tions in the control layer which process the request, manipulate business
models accordingly, hand data over to the view for rendering and send the
view’s output to the browser.

2.1.2 Component Based

Components are the oldest paradigm in web application frameworks. In
1996 NeXT Software Inc. released the WebObjects Framework, the very
first web application framework, just after HTTP/1.1 and Java 1.0 had
been released [Job95]. Other current examples are Seaside,3 Java Server
Faces4 and Tapestry.5

The idea behind the component based approach is to make the web appli-
cation development process similar to that of a desktop application. The
main difference to the request-based MVC model is that the control flow
during request processing is reversed. Pages are composed of components
and as a component renders, it fetches business models as needed, processes
data, renders subcomponents and returns a rendered HTML representation
of itself (see the description of JSF in [Sun08]).

Microsoft’s ASP.NET is especially notable amongst the component based
frameworks for its event-based control flow, similar to an interactive desktop
application.

Controls (the ASP.NET name for components) and script code embedded
in a webpage can be executed on the server or on the client. Pages are
compiled and exist as code objects in the server. When a request for a
page hits the server, the page’s Controls are initialized, interact with each
other through event handlers and finally render themselves. Interaction
and rendering create a ViewState that describes the state of the page and
is always communicated back and forth between client and server through
a hidden form field. User interactions, like submitting a form or clicking
a link, fire events which are handled by re-requesting the page from the
server. The page is then rendered again, taking the event into account; the
ViewState is updated and sent back to the client [Esp08].

1http://struts.apache.org
2http://www.springsource.org/
3http://www.seaside.st/
4http://java.sun.com/javaee/javaserverfaces/
5http://tapestry.apache.org/

20

http://struts.apache.org
http://www.springsource.org/
http://www.seaside.st/
http://java.sun.com/javaee/javaserverfaces/
http://tapestry.apache.org/

2.2. WEB-APPLICATIONS VS. WEB-SERVICES

2.1.3 Free Form

The term free form is used in this thesis to refer to web applications that do
not follow any of the established approach or do not use any kind of frame-
work at all. Hence, free form does not denote an architectural paradigm. It
is listed here to take into account that not all web applications are based
on frameworks.

This is true especially outside the enterprise domain. Early frameworks
were complex and targeted at the enterprise, using Java Enterprise Edition
Servlet technology as a basis [Sun08]. Web developers who worked outside
large companies often preferred leaner software stacks, such as those pro-
vided by PHP or Perl, that were easier to develop for and easier to deploy
[Dum05].

For those platforms, however, frameworks supporting lightweight develop-
ment approaches became available only recently. As a result, developers
were forced to come up with their own custom solutions to recurring prob-
lems.

Sometimes implementation of an application or parts of an application with-
out a framework is the result of a conscious decision. A framework offers
a lot of convenience but can carry a significant CPU and/or memory over-
head. To avoid this overhead, writing an application without a framework
can be suitable when performance is critical or resources are scarce.

2.2 Web-Applications vs. Web-Services

In [BGP00] Baresi et. al. give a definition of the term “web application”:

E-commerce, web-based booking systems, and online auction
systems are only a few examples that demonstrate how WWW
sites are evolving from hypermedia information repositories to
hypermedia distributed applications, hereafter web applications.
They blend navigation and browsing capabilities, common fea-
tures of hypermedia, with “classical” operations (or transac-
tions), common features of traditional information systems.

Informally, given this definition, any website offering more than simple in-
formation retrieval services can be considered a web application. With in-
creasing capabilities of server- and client-side programming environments
and growing ubiquity of fast internet access, web applications have become
more sophisticated in recent years. This development has shifted the mean-
ing of the term.

21

2.3. JAVASCRIPT

It would be unusual today to call an online-shop a web application. The
term is used instead for applications that, a few years ago, would not have
been considered for implementation on the web, such as business applica-
tions like calendars, collaboration tools, social networks and media sharing
sites, word processors, spreadsheet-applications and even audio-, image-
and video-editing software.

The W3C provides a definition of the term “web service” in [HB04]:

A Web service is a software system designed to support inter-
operable machine-to-machine interaction over a network. It has
an interface described in a machine-processable format (specif-
ically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

Removing implementation specific details from this definition (use of SOAP
and WSDL as protocols and XML as a data format) results in the defini-
tion of a “web service” as a software system designed to support interopera-
ble machine-to-machine interaction over a network. Other systems interact
with the Web service in a manner prescribed by its description using mes-
sages, typically conveyed using HTTP in conjunction with other Web-related
standards.

The shift of application logic from the server to the browser and the need
for structured development in more and more complex applications led to
web applications increasingly adopting characteristics of web services. The
popularity of REST in the last two years led to a style of web application
development that starts with an API serving potential clients in machine-
readable data formats and then implements the actual application with
this API. First users of the API are usually the client-side parts of the
application that query the server for additional data or execute actions on
the remote end as the user interacts with the application interface.

Opening up these APIs to the public increases interoperability between
sites and services. In the enterprise software industry this style of appli-
cation architecture is known as Service Oriented Architecture [Erl05]. In
web development, a term often used to describe applications composed of
services from multiple providers is MashUp [ZRN08].

2.3 JavaScript

JavaScript was originally developed by Brendan Eich at Netscape in 1995
and “aimed to provide a ‘glue language’ for the Web designers and part

22

2.3. JAVASCRIPT

time programmers who were building Web content from components such
as images, plugins, and Java applets” [Ham08]. It was released to the pub-
lic as part of the the Navigator 2.0 browser and later standardized as EC-
MAScript. The first edition (ECMA-262, 1997) was based on the Netscape’s
JavaScript, Microsoft’s JScript and other implementations [Ham08]. The
current standard is ECMA-262 3rd Edition (defined in 1999) and extends
the original with “regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, for-
matting for numeric output and minor changes in anticipation of forthcom-
ing internationalization facilities and future language growth” [ecm99].

Currently the ECMAScript 5th edition (abbreviated as ECMAScript 5 here-
after) exists as a final draft (an official 4th edition never existed). It “codi-
fies de facto interpretations of the language specification that have become
common among browser implementations and adds support for new fea-
tures that have emerged since the publication of the third edition. Such
features include accessor properties, reflective creation and inspection of
objects, program control of property attributes, additional array manipula-
tion functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.” [ecm09]

The names JavaScript and ECMAScript are often used interchangeably
today. Strictly speaking, JavaScript only denotes the Mozilla implemen-
tation of ECMAScript that was extended with several features, some of
which are reintroduced into the standard with ECMAScript 5 (such as get-
ters/setters).

Use of the Term in this Thesis

In conformity with the use of these terms in the development community
the term JavaScript will be used throughout the document as a synonym
for ECMAScript. The vendors of the engines mentioned in this thesis use
the term JavaScript themselves to describe their engines [App09, Goo09c,
Moz09b], although they do not implement all of the features defined in
Mozilla’s JavaScript standard (with the exception of Mozilla’s own Spider-
Monkey/TraceMonkey and Rhino engines [Moz09a, Moz09b]).

For the purposes of the thesis, the difference between the two is unimportant
since the Mozilla JavaScript Extensions do not fundamentally alter the
language but merely add convenience features. In places that explicitly
discuss the ECMAScript standard, the term ECMAScript will be used.
When specific features of Mozilla’s JavaScript standard are discussed, they
will be referred to as Mozilla JavaScript Extensions

23

2.4. CHANGES IN RECENT YEARS

Language Features

JavaScript features a C-like syntax and common control flow statements
(if/else conditionals, for/while loops, switch statements). JavaScript is dy-
namically typed. It is a prototype-based language using functions as con-
structors. Functions are supported as first-class data types. They can be
assigned to variables and passed around as closures. Functions can be called
as methods on objects, as unbound functions or be bound to any object for
the execution of a single call. JavaScript has literals for arrays and objects
(which can be used as associative arrays). Strings can be evaluated as code
at runtime [Cro08].

The language follows very few rules, but its open structure makes it ex-
tremely flexible and allows it to build higher level features such as classes
on top of the language core.

2.4 Changes in Recent Years

Since about 2004, the World Wide Web underwent great changes in per-
ception, use and implementation, summarized under the vague term “Web
2.0”, made popular by Tim O’Reilly [O’R05]. While validity of attaching a
version number to Web can be debated, it is undeniable that around that
time the use of the web changed and technologies changed with it. This sec-
tion will concentrate on the technological changes, especially with regard
to web development.

Two very important aspects were briefly mentioned before, the introduction
of XMLHttpRequest and AJAX in Section 1.1 and the growing architectural
similarities between web applications and web services in Section 2.2. In this
Section, AJAX and a few other important developments will be examined
more thoroughly.

2.4.1 Web 2.0 and AJAX

The availability of the XMLHttpRequest API enabled a new style of user
interaction that turned the web page into a canvas to be filled with data
fetched in the background, after the page itself had been loaded. Applica-
tions felt much more responsive, since the need to reload the entire page
for each update was removed. This responsiveness, amplified through the
rising availability of high-speed internet access, gave web applications an
acceptance boost and finally resulted in the migration of applications to
the web that would not have been considered before [Gar05].

24

2.4. CHANGES IN RECENT YEARS

AJAX led to a comeback of JavaScript, which was very hard to use success-
fully before. The problem was not the language in itself, but the implemen-
tations of the APIs used to communicate with the browser and the DOM.
These were largely incompatible between browsers, making development
difficult and frustrating [Koc09]. The language’s newly gained attention
quickly led to the development of client-side JavaScript frameworks like
the ones listed in Section 1.1.

These frameworks not only abstracted away browser incompatibilities, but
thanks to JavaScript’s open structure, each could provide a different ap-
proach at making JavaScript development easier and more pleasant for the
developer. This, in turn, further reinforced tendencies towards client-side
development. A popular example of a client-side web application with a
sophisticated user interface is Google Maps.6

2.4.2 JavaScript Engines

The increased use of JavaScript in the browser prompted vendors to pay
more attention to JavaScript execution performance and led to the devel-
opment of new JavaScript engines and, in case of Google’s Chrome, even an
entirely new browser dedicated to support complex client-side JavaScript-
driven web applications. They all use modern interpreter technology in
order to run JavaScript much faster and use memory more efficiently than
previous engines. It is currently not possible to give an objective compar-
ison of their performance characteristics, as all engines still undergo rapid
changes and new speed records are established frequently.

SpiderMonkey is the name of Mozilla’s C++ based JavaScript engine used
in the popular Firefox web browser. Firefox 3.5 (released June 2009) fea-
tures an improved version of SpiderMonkey called TraceMonkey. Trace-
Monkey is a bytecode interpreter with optional just-in-time (JIT) compi-
lation capabilities. It recognizes most-executed loops in a JavaScript ap-
plication using Trace-Trees technology [Eic08b, GF06]. Were the difference
is irrelevant, SpiderMonkey will be used to label both the former and the
current, optimized version of the engine hereafter.

Apple Inc. released version 4 of its Safari browser in June 2009, featuring
a new JavaScript engine called Nitro (known under the code name Squir-
relfish/Squirrelfish Extreme before). Like TraceMonkey, Nitro is a C++
based bytecode interpreter with several performance enhancing features
like bytecode optimizations, a polymorphic inline cache, context threaded
JIT compilation, and regular expression JIT compilation [Sta08].

Google’s Chrome browser, released in 2008, is heavily focused on supporting
complex JavaScript applications. Among stability-enhancing mechanisms,

6http://maps.google.com/

25

http://maps.google.com/

2.4. CHANGES IN RECENT YEARS

Chrome uses V8, a brand-new JavaScript Engine written in C++, opti-
mized for running applications with large codebases. V8 features mech-
anisms for fast property access, dynamic machine code generation, and
efficient garbage collection [Goo09b].

The last of the popular JavaScript engines is Mozilla’s Rhino. Unlike the
other engines, it is comparatively old and not as optimized for speed. Rhino
was created in 1997 at Netscape. Initially intended as a JavaScript imple-
mentation written in Java for a Java-based browser, it was never used as
such but became popular as an independent engine for embedding in other
applications. Rhino can either interpret JavaScript files or compile them to
Java classes [Moz09b]. It features an extremely easy integration with the
Java runtime through its LiveConnect interface [Boy09].

Table 2.1 summarizes these informations into an overview. In Section 4.1.3
the engines are further compared with regard to their suitability for imple-
menting a prototype for this thesis’ design.

Vendor,
Product

License,
Language

Features

TraceMonkey
2009

Mozilla,
Firefox

MPL 1.1 /
GPLv2,
C++

Oldest engine. Bytecode inter-
preter with JIT compilation.
TraceTree Optimizations

Nitro
2009

Apple,
Safari 4

GPLv2,
C++

Bytecode interpreter with
context-threaded JIT com-
pilation. Polymorphic inline
cache. Regular Expression JIT
compilation

V8
2008

Google,
Chrome

BSD,
C++

Optimized for large codebases.
Fast property access, dynamic
machine code generation, effi-
cient garbage collection

Rhino
1997

Mozilla MPL 1.1 /
GPLv2,
Java

Interpretive mode and compi-
lation to Java classes. Seamless
integration with Java runtime.

Table 2.1: Overview of three new high-performance JavaScript engines and the older
Rhino engine.

2.4.3 Approaches to Database Systems

For a long time, web applications of any scale and kind have used relational
databases like the open-source MySQL or PostgreSQL databases. In recent
years, people in the web development community voiced their concerns
about the suitability of relational databases for web applications, which
often operate on textual or semi-structured data [Ark07].

26

2.5. PROTOCOLS FOR WEB SERVICES

Even outside the web, experts begin to question the use of RDBMS for
every kind of problem. In [SMA+07], Stonebraker argues that the design
(and often the code) behind RDBMS stems from use cases and hardware
preconditions of the 1970s that have become irrelevant since. He lists sev-
eral examples where alternative approaches to data storage have greatly
outperformed generic relational database systems.

Considering the web, in [Lin04] Ling et. al. write

Traditional relational databases which assume that data is struc-
tured are no longer suitable for the new Web applications be-
cause the data on which the Web applications are based lacks
structure and may be incomplete. Thus, many of the techniques
that were previously used may not be applicable. This less struc-
tured data, also known as semi-structured data, is usually repre-
sented as a tree of elements, where the children are sub-elements
of their parent element.

As described in Section 1.2.4, optimizing systems that are backed by re-
lational databases for performance is usually achieved by sacrificing the
conceptual benefits of relational schemas, as far as degenerating databases
to key-values stores. Under these circumstances, carrying the overhead of
a relational storage and query engine becomes questionable if its benefits
are not used.

From these deliberations, the experiences big websites had with scaling
databases (see [Atw08]) and from the research on XML databases, multiple
vendors and open-source projects started to provide alternatives to rela-
tional databases in recent years [Jon09]. Three of these projects considered
for use in the new framework are the CouchDB, MongoDB and Persevere
databases, described in detail in Section 4.1.1. They offer storage of semi-
structured data, accessible via standard protocols and formats (REST and
JSON) and are optimized to provide high performance while keeping a lean
feature set.

2.5 Protocols for Web Services

For the implementation of web services, several standards exist today. They
all resemble traditional remote procedure calling protocols like CORBA
(Common Object Request Broker Architecture, Object Management Group),
DCOM (Distributed Component Object Model, Microsoft) or Java RMI
(Java Remote Method Invocation, Sun) but use HTTP and open web stan-
dards and protocols for transport.

27

2.5. PROTOCOLS FOR WEB SERVICES

2.5.1 SOAP

SOAP (Simple Object Access Protocol) is a language-independent web ser-
vice messaging standard that uses XML-based messages. It supports two
types of communications: messaging and RPC.

SOAP messages consist of an Envelope element containing a Header and a
Body element. The Envelope defines the message’s namespaces. The Header
is optional. The mandatory body contains the information exchanged in a
message, or name, address and arguments of a method in the case of a
RPC.

SOAP is thoroughly standardized and widely used in enterprise software
development [YLBM08].

2.5.2 REST

The term REST (Representational State Transfer) was created by Roy
Fielding in his dissertation Architectural Styles and the Design of Network-
based Software Architectures to describe a set of design principles and con-
straints for distributed hypermedia systems [Fie00]. As such, REST is not
the description of a specific architecture but a meta-architecture that ac-
tual architectures can follow. The HTTP protocol, for example, fulfills the
criteria of REST, but a lot of architectures built on top of it do not, since
they violate one or more of REST’s requirements.

The key components in REST are Resources, defined as “any information
that can be named,” identified and referenced through Resource Identifiers,
Representations of resources, consisting of data and metadata —actual
bytes—, capturing the current or intended state of a resource, and Connec-
tors of different types (client, server, cache, resolver, tunnel).

These components operate together under certain principles: The archi-
tecture must be client-server separated, communication between the Con-
nectors should be stateless, and data labeled cacheable should be treated
appropriately. Interfaces between connectors should be uniform and the
entire system separated into layers to limit its complexity.

REST gained widespread attention through the publication of RESTful
Web Services [RR07] and the following implementation of REST support
in the popular Ruby on Rails framework [Han09]. Usage of the term in the
web development community is vague and not always congruent with its
original meaning. Instead, RESTful is often used to describe architectures
that feature some of Ruby on Rails’ implementation details, like human-
readable URLs, usage of HTTP PUT and DELETE, in addition to GET
and POST and respect for the Accept and Content-Type headers.

28

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

This very informal specification however has not stopped web services from
advertising their APIs as RESTful. Even without a clear definition of what
an individual service means by REST, a description of the addressable re-
sources, supported methods and a data format for the representation of
those resources is usually sufficient to successfully use such an API, be-
cause the only requirements for writing clients to REST APIs are support
of the HTTP protocol (widely available in form of libraries) and compat-
ibility with the media types used for the resource representations (which
are usually standard formats like XML or JSON).

2.5.3 XML-RPC / JSON-RPC

XML-RPC (Extensible Markup Language Remote Procedure Call) is a pre-
cursor to SOAP, designed for calling methods remotely via HTTP, using
XML as an exchange format. The XML-RPC specification is much less ex-
tensive than the SOAP standard. XML-RPC merely defines the basic setup
of a methodCall, the call’s properties and a few standardized data types (int,
boolean, double, string, dateTime, base64, array, struct) [LDJ01].

JSON-RPC is very similar to XML-RPC. As the name suggests, JSON-
RPC uses the JSON format instead of XML. JSON-RPC is not an official
standard; since it is defined very simply, and easy to implement, many
JSON-RPC drivers exist for all kinds of programming languages [jsone].

2.6 Existing JavaScript Based Frameworks

Several server-side JavaScript frameworks and environments already exist.
Most of them use Mozilla’s Rhino or SpiderMonkey engines. This section
presents the candidates that are most relevant in how their design relates to
this thesis, and provides a quick overview of other, less relevant approaches.

2.6.1 Helma

Helma, or Helma Object Publisher,7 is a framework based on the Rhino
engine. Its core feature is the close coupling between URLs and model
objects.

Helma applications define a hierarchy of objects through a directory struc-
ture in the filesystem. Each directory inside the hierarchy maps to a Java-
Script prototype inside Helma, with properties defined through JavaScript
files placed inside the directory. These prototypes and subsequently all other

7http://www.helma.org/

29

http://www.helma.org/

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

objects within Helma are derived from the HopObject, which is a base ob-
ject that can contain child HopObjects, serve URL requests and persist to
Helma’s internal XML database or to a SQL database [Hel09].

Helma shares the emphasis on business objects with the design developed
in this thesis, keeping the controller layer very thin. It does this by mixing
model and controller aspects in the HopObjects. Helma does not explicitly
support code sharing between client and server. The default data providing
mechanism, however, is server-side rendering of HTML templates. The use
of JavaScript as a server-side programming language does not seem be
motivated by the role of JavaScript on the client but by the prototypal
nature of the language. Thusly Helma’s JavaScript sources are not designed
to be used on the client.

2.6.2 Persevere

Persevere8 is a very powerful JSON database and JSON-RPC server, de-
veloped by the Dojo Foundation for use with the Dojo Toolkit client-side
JavaScript framework. It extends plain storage mechanisms with the abil-
ity to define classes on the server. These classes provide type- and value-
constraints to stored objects as well as methods that can be called remotely
via JSON-RPC. Objects can be addressed via REST and accessed through
AJAX and COMET interfaces supporting JSON-Query and JSON-Path
[Doj09b].

Persevere’s libraries and models operate entirely on the server-side. Client-
side applications interoperating with Persevere are expected to implement
their own model layer on top of the data provided by Persevere.

The concept of a document database enhanced with RPC and validation
capabilities is very similar to the design in this thesis. Still, there are two
important differences. While Persevere claims to use an object-oriented
database, this object orientation is only a layer on top of a traditional
SQL database. More importantly, Persevere does not support code sharing
between server and client, making redundant implementations necessary.
Persevere is designed primarily for use with the client-side Dojo Toolkit,9

whereas the architecture in this thesis is intended to be used with any
client-side library.

8http://www.persvr.org/
9http://www.dojotoolkit.org/

30

http://www.persvr.org/
http://www.dojotoolkit.org/

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

2.6.3 Aptana Jaxer

The idea behind Aptana’s Jaxer10 environment is to“Use your Ajax, HTML,
JavaScript and DOM skills server-side” [Apt09]. Jaxer processes HTML
pages on the server by parsing them through the Gecko engine (the HTML
engine used in the Firefox web browser) and by executing inline server-side
JavaScript fragments with SpiderMonkey. The server-side scripts can access
and manipulate the DOM created by the HTML source. After scripts have
processed and possibly modified the DOM, it is converted back to HTML
and delivered to the client. JavaScript embedded in a page can be declared
to be run at the server, the client or both locations, or to actually run on
the server but generate delegate functions on the client that are executed
either synchronously or asynchronously via XMLHttpRequest.

Beyond these main features (accessing the DOM server-side, delegating
functions), Jaxer offers basic session, logging, network, database and util-
ity capabilities. It does not provide architectural paradigms and examples
shown on the project’s homepage suggest that structuring an application is
left entirely open to the developer. Jaxer does not explicitly support REST
or JSON-RPC protocols.

Jaxer shares with this thesis’ design the ability to share code between server
and client. It requires the developer to work with SQL directly, violating
the idea of using a single language and leaving the ORM problem entirely
unsolved. The unstructured approach is likely to induce glue code due to
missing low-level support libraries.

2.6.4 Others

Many other server-side JavaScript frameworks exist beyond the ones pre-
sented above. Of those, only a handful are in active development.11 They
are only described very briefly here, because they aren’t as relevant in their
design, in regard to this thesis, as the ones presented in detail above.

JavaScript Environments

The term JavaScript Environments encompasses a number of projects that
aim to use JavaScript as a general purpose scripting language, similar to
Perl, Python or Ruby. These projects do not primarily see JavaScript as a
tool for server-side web development, but they support using it as such in
several ways.

10http://www.aptana.com/jaxer
11Projects examined were assumed to be in active development if they had any announce-

ments or commits during the last 6 months.

31

http://www.aptana.com/jaxer

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

Jslibs12 A standalone JavaScript interpreter and runtime environment
that includes multiple modules such as OpenGL, zlib, a foreign function
interface (FFI) and a FastCGI module. Jslibs uses the SpiderMonkey en-
gine.

V8cgi13 Similar to jslibs, v8cgi provides a JavaScript runtime environ-
ment (based on Google’s V8 engine) and several modules for additional
functionality. Unlike jslibs, v8cgi is focused on server-side web development.
Therefore only modules are included that have relevance to server-side ap-
plication development, like HTTP, MySQL, Sockets, or JSON. V8cgi can
be compiled as a CGI-executable or as an Apache module.

GLUEscript14 GLUEScript is the successor of the wxJavaScript project
and aims to promote the use of JavaScript as a general purpose language. It
is very similar to jslibs, uses the SpiderMonkey engine and can be compiled
as an Apache module.

Servlet Adapters

Three projects, Torino15, Myna16 and ESXX17, use Mozilla’s Rhino en-
gine to provide an adapter between Java servlet containers [Sun08] and
JavaScript, making it possible to write servlets in JavaScript. In providing
a plain interface between server and interpreter, these projects are similar
in their intention to v8cgi.

Since all three use Rhino, they have access to the Java runtime via Rhino’s
LiveConnect feature, and can utilize any Java library. Because of that, the
adapters provide only very basic APIs themselves, and encourage developers
to use Java libraries.

Full-Stack Frameworks

The following projects provide more than simple adapters between engines
and host environment. They are web development frameworks with exten-
sive support for templating, database connectivity and request processing.

12http://code.google.com/p/jslibs/
13http://code.google.com/p/v8cgi/
14http://gluescript.sourceforge.net/
15http://http://torino.sourceforge.net/
16http://http://www.mynajs.org/
17http://http://www.esxx.org/

32

http://code.google.com/p/jslibs/
http://code.google.com/p/v8cgi/
http://gluescript.sourceforge.net/
http://http://torino.sourceforge.net/
http://http://www.mynajs.org/
http://http://www.esxx.org/

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

Phobos18 Phobos is a multiple-language web development framework de-
veloped by Sun Microsystems, and running on the Java platform. It can
be deployed to any Java servlet container. Although Phobos theoretically
supports any scripting language implementation conforming to the JSR-223
standard [Sun09], it currently ships with JavaScript only. Phobos provides
facilities for dispatching, templates, and ORM, which can be combined to
an application through controllers and views written in JavaScript.

Axiom Stack19 Axiom is a fork of Helma and similar in structure. It
uses a customized version of the Apache Lucene database, or a relational
database. The application objects are exposed through a JavaScript layer
realized with Rhino. Requests are mapped to objects or templates in a
RESTful fashion.

Trimpath Junction20 Trimpath Junction is a clone of Ruby on Rails writ-
ten in JavaScript, running on top of Helma. Junction uses the Rhino Ja-
vaScript engine and the SQLite database. It features support for offline
applications through Google Gears21 and for sharing code between server
and client.

Ejscript22 The Ejscript Web Framework provides a complete MVC stack
on top of a custom ECMAScript engine. It features an integrated SQLite
database and an object-relational mapper, data binding AJAX view con-
trols, and uses jQuery for client-side programming. The Ejscript engine was
created explicitly for server-side web applications and provides libraries that
go beyond the default objects defined in ECMAScript, such as a in-memory
web server module.

Frameworks with JavaScript Support

The frameworks listed here are not primarily JavaScript frameworks, but
support JavaScript to glue together parts of applications.

Cocoon Flowscripts23 Cocoon is a web development framework written
in Java that promotes separation of concerns as its main feature. It claims
to achieve this by building web applications from components that can

18https://phobos.dev.java.net/
19http://www.axiomstack.com/
20http://code.google.com/p/trimpath/
21http://gears.google.com/
22http://www.ejscript.org/
23http://cocoon.apache.org/

33

https://phobos.dev.java.net/
http://www.axiomstack.com/
http://code.google.com/p/trimpath/
http://gears.google.com/
http://www.ejscript.org/
http://cocoon.apache.org/

2.6. EXISTING JAVASCRIPT BASED FRAMEWORKS

be combined using “component pipelines”. One feature of Cocoon are its
Flowscripts, a “JavaScript API to manage control flow based on an ex-
tended version of the Mozilla Rhino JavaScript interpreter that supports
continuations” [Apa09a].

Apache Sling24 Apache Sling is a REST based web framework written
in Java. It routes requests to Java servlets or scripts in multiple languages
including JavaScript.

24http://sling.apache.org/

34

http://sling.apache.org/

3
Chapter 3

Design

Section 1.2 already outlined the major problems in current web development
and described how a server-side framework written in JavaScript opens up
new possibilities to solve them.

In this chapter, an implementable design will be derived from these delib-
erations.

3.1 Key Ideas

This section presents the key ideas from Section 1.6 once more, together
with suggestions on how they can be realized using the features that the
JavaScript language provides.

3.1.1 Avoiding Data Transformation and Lightweight Creation
of Models

In Section 1.3.2, it was demonstrated how data traverses through many
stages between the database in the back-end and the DOM in the browser.
The problems caused by this traversal were presented as well.

Conversions between most of the described steps become unnecessary if
a JavaScript framework is combined with a JSON database. With data
always present as JavaScript objects, transformation steps between different
representations of data can be kept to a minimum. Only when data is
transferred from server to server, a JSON encoding is necessary. Client-side,
depending on the approach taken, data could even be inserted directly into
the DOM, without an intermediate HTML representation. Additionally, a
JSON database removes the need for an object-relational mapping layer
between the database and the rest of the application.

35

3.1. KEY IDEAS

Under these conditions, the creation of lightweight model instances can be
achieved by creating an empty object, derived from a model’s prototype,
and storing the instance’s actual data in a property of this object.

3.1.2 A Thin Controller and Uniform Models

Reducing necessary code for the application developer to write is one of the
major motivations for the development of the new JavaScript framework.
This is achieved through some overlapping concepts that are described in
this section.

Resource Controller

Based on the Exposure of Objects Through APIs scenario in Section 1.3.3,
model objects on the application server are expected to share very simi-
lar life cycles during request processing that rarely vary. This suggests a
controller design based around these similarities. As a result, the following
concept emerged:

Rather than manually defining controllers that provide access to models of a
specific class, a single uniform resource controller is used to process incom-
ing requests. To simplify its interface, the communication between clients
and the resource controller is performed through JSON-RPC requests.

The resource controller analyzes the URL to determine the model on which
to operate. The basic life cycle of each model class or instance during request
handling is very similar, but to accommodate for special requirements of
individual models, callbacks can be defined that manipulate control flow or
data during request handling (see Figure 3.1).

The name resource controller refers to the Rails plugin of the same name
[Gol09], and was chosen because it shares the plugin’s ideas, taking them a
step further. Also, the way classes and instances on the server are addressed
through URLs (see Table 4.2 on page 63) fulfills the criteria for resources
formulated by REST [Fie00], which made the name fitting.

Specifying Model Behavior

In addition to methods and properties defined on them, models contain
various information defining their structure and behavior.

Associations declare the kinds of connections a model has to other mod-
els. Association declared in a model enable navigation through connected
objects.

36

3.1. KEY IDEAS

Server

Client

a) b) c)

JSON Store

Adapter

Logic

Open Method
Model-Object

Secret Method
(RPC-delegate)

Model-Object

Open Method
Model-Object

Open Method
Model-Object

Secret Method
(serverside Impl.)

Model-ObjectAutomatic
Request

Verification

Callback

Figure 3.1: Architecture of the framework. The three columns a, b and c illustrate
different request processing variants. a) No application specific code in the adapter
layer. Request validation is performed by means of the criteria defined in the model. b)
A callback in the adapter layer intercepts the request. c) The model contains methods
whose implementation is hidden from the client. Calls to those methods are delegated
to the server.

37

3.1. KEY IDEAS

Validations define those states of a model instance, in which it is allowed to
be persisted. These validations can be provided as simple functions, either
defined manually or by validation generators provided with the framework.
These validations are checked before an instance is saved to the database
(variant a in Fig. 3.1).

Callbacks hook into a model instance’s life cycle to provide a way to auto-
matically alter model data. For example, a declared numeric property could
be stripped from leading and trailing whitespace and explicitly converted
to a numeric value before entering the validation phase.

Associations, validations and callbacks alter a model’s structure and behav-
ior but do not directly influence request handling in the resource controller.
To manipulate the life cycle of a model during request processing, callbacks
of a second type can be defined on the model. These are executed by the
resource controller rather than by the model. Their execution in the re-
source controller’s context grants them access to the request, session, and
response objects which allows them to manipulate request processing and
perform tasks like access control or HTTP redirection. This is illustrated
in variant b of Fig. 3.1

Adapter Layer

With models and the resource controller working as described, the control
layer can be drastically reduced. For simple cases controllers do not even
have to be defined anymore; the resource controller automatically adjusts
itself to the needs of a model by inspecting it.

In “traditional” MVC frameworks (see Section 2.1.1), the control layer’s
primary task is management of the application’s control flow. With much
JavaScript already running on the client and the controller layer slimmed
down by using the resource controller, it makes sense to shift control flow
management to the client as well, leaving only basic access control and
session management on the server.

This changes the control layer’s focus from controlling the application at
its core to providing data to the client in the form of model instances, and
executing methods on the models as requested by incoming JSON-RPC
messages.

To set it apart from the old concept of the control layer and emphasize its
new duties, this leaner variant will be called Adapter Layer. Its primary
purpose is that of an adapter between the database and the application
running on the client, and of a receiver of remote procedure calls. The
control flow management, now shifted to the client, forms the Logic Layer
(compare Fig. 1.2 on page 15).

38

3.1. KEY IDEAS

For exceptional occasions, when the resource controller is not sufficient for
a task, custom controllers can be defined. This makes it possible to provide
static information or data from sources other than the defined models.

Exploiting Nested Structures

Nested structures are often found in web applications, in the form of com-
pound, associated objects or objects of flexible structure (see Sections 1.3.4
and 1.3.5). Since web applications often operate on textual or semi-struc-
tured data, strong support for working with these structures can provide
great productivity benefits [Ark07].

Support in the adapter layer for processing complex input saves the devel-
oper from explicitly traversing and processing the nested structure when
saving or validating data. Without this support, automatic processing of
write-requests to the resource controller would only be possible in very
simple cases with non-nesting models.

3.1.3 Code Sharing, Code Splitting and Delegation

It is beneficial for several reasons to reuse and share code between server
and client. If the application’s front-end is designed to run in the browser,
rich models are useful to easily access validations, associations and model
functions. To avoid an impedance mismatch between model representations
on server and client and to prevent redundant implementations, the code
that defines and implements models on the server should be usable on the
client as well.

Simply using identical code on client and server is inappropriate for an
effective use of code sharing. The design of the sharing mechanism needs
to take into account several cases:

• Aspects used only on the server

• Aspects used only on the client

• Aspects used on both server an client

Code for each of these cases should be writable in a concise way, avoiding
duplication. This can be achieved by defining the cases in terms of their
differences. The developer is able to provide a file containing shared aspects
as well as files for location-specific aspects. The framework combines the
contents of these files to load a version of the module that features all
required aspects for the current location. This is illustrated in Fig. 3.2.

39

3.1. KEY IDEAS

There are several features that benefit from code sharing. Form validation
in the browser can be achieved easily if the form contents are used to create
a model instance. This instance is then validated against the same valida-
tion definitions used on the server. Security features can be run on both
the client and the server. Although the client-side execution should not be
used to actually secure the application (this has to be done in the trusted
environment of the server), they can provide convenience for the user by
indicating a lack of access privileges to certain data or operations before he
tries to perform a request that is about to fail [Lho06b]. Persistence aspects
of models benefit greatly from code sharing and splitting. While many per-
sistence features can be shared between server and client, the lower-level
operations such as saving or retrieving records need to be implemented
differently on server and client.

Remote delegation builds upon the code sharing and splitting mechanisms.
This feature is used to make methods available to the client without expos-
ing the methods’ implementations. There are multiple reasons for hiding
an implementation from the client (proprietary algorithms, security related
code) or for executing it on the server (bandwidth or latency issues). Dele-
gation can be implemented by writing a method as a server-only aspect of a
model, exposing it as JSON-RPC-callable, and writing a client-side delegate
that sends an RPC request to the method (variant c of Fig. 3.1). For simple
cases it is even possible to generate the client-side method automatically.

Shared aspects

Server-side aspects Client-side aspects

Server-side version Client-side version

adding,
removing or
changing the
shared version

Figure 3.2: Module inheritance with code sharing and splitting.

40

3.2. OBJECT INFRASTRUCTURE DESIGN

3.2 Object Infrastructure Design

3.2.1 Controllers

Request processing on the server happens in two different types of con-
trollers. Depending on the URL, requests are either routed to a custom
controller or to the resource controller. The custom controller provides man-
ually predefined actions to the client, the resource controller works with a
model to provide access to that model’s methods.

One of the core ideas behind the framework is the use of JSON-RPC (see
Section 2.5) in combination with a strict schema for addressing recipients
of remote method calls.

Resource Controller

Usually, requests will be handled by a generic resource controller. This
controller is implemented only once and handles all requests to URLs that
correspond to models. This is possible through a series of conventions and
interfaces to which the models adhere. In most cases, requests directed at
models are handled in very similar ways. To allow for exceptions, models can
specify callbacks to be executed at specific stages during request processing.

The basic idea of the resource controller is that RPC receivers are always
model instances or model classes. Clients can send JSON-RPC messages to
URLs with the structure /<model> or /<model>/<id> to call methods on
either the class or an instance of a model.

To make a remote procedure call, the client sends a POST request contain-
ing the name of the method to be called and its parameters. Which of a
model’s methods are RPC-callable is declared in the model.

Custom Controller

For special cases, custom controllers can be defined. They are addressed
through URLs of the form /<controllername> and provide their actions
as RPC-callable methods to the client. This makes it possible to provide
static information or data from arbitrary sources to the client.

41

3.2. OBJECT INFRASTRUCTURE DESIGN

Controller Support Structures

Several facilities exist that abstract away some of the details of an incoming
HTTP-Request or assist the developer in processing a request.

Any incoming request is first wrapped into a JavaScript object containing
all information about the request:

• HTTP Method

• Content-Type

• URL

• Body (if present)

• Any additional headers

This is performed not by the framework itself but by underlying middleware
connecting the framework to a HTTP server.

Incoming requests’ bodies are parsed and converted to objects representing
the remote procedure call that the request contained. Controllers processing
the request should not need to differentiate between a JSON-RPC requests
made via GET and a querystring or through a POST request containing a
JSON object in the body.

A dispatcher selects the appropriate controller to handle the request. This
is done by first looking up existing custom controllers and handing over
control to the first controller that matches the URL. If no custom controller
is found, the dispatcher looks for a model class matching the URL and
invokes the generic resource controller, passing it the request object and
the model class.

During the processing of the request, several helper functions assist the
developer in formulating a correct HTTP response. Headers can be specified
and cookies are set or deleted. To support sessions, an additional abstraction
layer is provided. Session objects are stored into a data structure that is
automatically saved when request processing is done and restored when the
next request arrives. Several methods for storing sessions are possible, such
as using the filesystem or a database.

After headers and cookies have been set, the return value of an action or
procedure call is sent to the client in the response body.

Controllers or models may raise exceptions during request processing. These
exceptions are caught, wrapped in a JSON-RPC error object and sent to
the client.

42

3.2. OBJECT INFRASTRUCTURE DESIGN

3.2.2 Models

The resource controller is implemented only once and not extendable. Mod-
els thus provide a broad range of opportunities to specify structure and
behavior in a way that allows the resource controller to automatically in-
corporate special aspects of individual models into the control flow during
request processing.

Class Architecture

The object inheritance design for models follows a few principles:

• Minimization of repetition

• Hiding server-only aspects from the client

• Resource controller integration

In order to minimize repetition, the design integrates a concept that mimics
classes as known in traditional object-oriented languages like Java or C++.
Each model consists of instances, and a class that contains aspects which do
not concern specific instances (see Fig. 3.3). At the top of the inheritance
chain lies the Class prototype. The Class prototype provides functionality
for all classes, especially methods that perform persistence tasks. These
methods fetch and instantiate models from the database.

Corresponding methods, dealing with persistence for individual model in-
stances, are located in the Common Instance prototype. These methods
provide the means to save, delete or reload an instance. The Common In-
stance prototype also contains accessor methods that allow controlled access
to the internal data of an instance.

The class for a concrete model inherits from the Class prototype and ex-
tends it with

• Information for the finders on how to locate model instances in the
database

• A resource name for the model, so the resource controller can find the
correct model when handling a request

• Class-level methods

• Validations for instance data

• Resource controller callbacks and RPC availability information about
methods

43

3.2. OBJECT INFRASTRUCTURE DESIGN

Most importantly, the class contains a property called instancePrototype
which inherits from the Common Instance prototype. This instance proto-
type is what the name implies: the prototype for instances of the model. It
extends the Common Instance prototype with properties specific to an indi-
vidual model. These properties include information about associations the
model has to other models, callbacks for execution during the instance’s life
cycle, and other custom methods that should be available on the instance.

A model instance is created when one of the finder methods in the model’s
class is called or when an association in an instance of any model is ac-
cessed. The finder then fetches the model’s data from the database, creates
the model instance, initializes its state and stores the fetched data in the
.data property. If associations are defined on the model, association prox-
ies, making the associated objects available, are added to the new instance.
These are the only properties in the instance, all other methods are provided
by the instance prototype.

- Data
- State
- Errors
- Association proxies

Instance

Model Class
- Infos for Finders
- Resource name
- Class methods
- Validations
- Method-availability information for JSON-RPC
- Resource controller callbacks

instancePrototype:
- Association information
- Model callbacks

- Persistence
- Data accessors

Common Instance
prototype

.model

- Persistence
Class prototype

Prototype
relation

Simple
pointer

Figure 3.3: Class layout for models, showing the relations between the Common
Instance prototype, the Class prototype, a model’s class and a model’s instance.

44

3.2. OBJECT INFRASTRUCTURE DESIGN

Resource Controller Integration

As described in Section 3.2.1, the resource controller acts as an interface,
exposing the models to clients by making their methods available via JSON-
RPC.

This is possible because use of the JSON-RPC protocol between client
and server and the uniform persistence mechanisms of the models provide
uniform access patterns.

Although this pattern will fit the majority of cases, even the best-designed
(non-trivial) application will contain occasions in which exceptions to the
standard procedures are needed. To enable the implementation of such ex-
ceptions, models define resource controller callbacks. These are functions
the resource controller executes at certain points during request processing
to perform input filtering, output filtering, redirects or the injection of data
into the session.

Since models are not expected to be used outside the framework, and mixing
in additional information from a separate file would add complexity with-
out providing benefit, controller callbacks and information about method
availability are stored in the models themselves.

Code Splitting

There may exist certain aspects in models that should not be exposed to
the client. These aspects might contain security-related code or proprietary
algorithms but also different persistence methods. To prevent these methods
from being transmitted to the client when the JavaScript code for models
is sent, the definition of a model can be split in two. The default definition
of a model contains only code that can be shared between server and client.
Additional files may optionally remove, replace or add certain methods and
properties to a model’s class and instance prototype to create a server- or
client-specific version of the model (see Fig. 3.2).

Lightweight Model Instances

The model instance objects do not contain methods themselves. These
methods are stored entirely in the instance prototype of a particular model.
The instance only contains a .data property holding its stored data, and
other properties keeping track of the instance’s state. By storing only the
contents of the .data property to the database, a quick instantiation and
serialization of very lightweight instance objects is possible.

45

3.2. OBJECT INFRASTRUCTURE DESIGN

Associations and Nested Data

A model’s definition contains information about its associations to other
models. In the simplest case such an association consists of the association’s
name and its kind (indicating how the association is stored in the database,
see Section 4.3.3). These two pieces of information can later be used to
generate accessor proxies for the association in instances of the model. More
complex associations can be implemented simply by defining the accessors
manually.

Objects can be serialized and transferred between client and server together
with their associations, so that sending an object and its associations can be
done in a single request. This is required actually, if the resource controller
should be able to handle find and save requests on non-trivial objects.

To enable automatic processing of instances sent to the resource controller
together with associated objects, the framework has to support this kind of
nested structure in the resource controller and the models. This requires a
standard for representing associated objects in JSON-encoded RPC request
as well as automated generation of these representations. In the model layer,
these combined representations have to be resolved and the corresponding
associated model structures have to be recreated. Automated tasks like
validation and saving need support for working with these nested structures.

46

4
Chapter 4

Implementation

This chapter aims to explain the implementation process and rationalize
some of the decisions made during development of the prototype for the
ideas presented in this thesis. This prototype was called Kupo and is avail-
able as open-source. Instructions on how to download, install and run Kupo
can be found in the appendix.

4.1 Choice of Back-End Software

Even a project as small and clearly defined as this prototype is unreasonable
to build completely from scratch. Kupo relies on a number of lower-level
tools and frameworks to implement the architecture devised in Chapter 3.
Before implementation could start, it had to be decided a) which JSON
database to use, b) which JavaScript engine to choose, c) which additional
tools and libraries would support development best.

4.1.1 JSON Databases Compared

Although several prototypes and implementations for document-oriented
databases existed when the work on Kupo began, only three were popular
enough to be considered serious projects, and mature enough to be actually
used.

Persevere

The Dojo Foundation’s Persevere has already been introduced in Section
2.6.2 where it was examined as a framework similar to the one designed in
this thesis. Ignoring its ability to provide JSON-RPC services, Persevere

47

4.1. CHOICE OF BACK-END SOFTWARE

can be used (and is advertised) as a document-oriented database using
JSON as its exchange format. Persevere is written in Java and closely tied
to the client-side Dojo Toolkit. Access to the database is provided to clients
via the HTTP protocol only. Persevere supports optional schemas, multiple
indices and complex queries via the JSONQuery syntax [Doj09a, Doj09b].

CouchDB

CouchDB is a JSON database developed by the Apache Foundation. It is
written in Erlang and focused on being fault-tolerant, distributed and fast
[Apa09b]. CouchDB exposes data through a REST API, much like Perse-
vere, and has no additional features beyond data access and maintenance
interfaces. CouchDB is schema-free, the only way of adding structure and
performance is the creation of inflexible views on a database. These views
are created by JavaScript functions performing Map-Reduce operations on
the full set of objects and are updated automatically whenever an object is
added to or removed from the database [DG08, Apa09c]. The Map function
of a view creates a collection of [object id, key, values] triples, sorted by the
key. Fetching this collection (this view) is the only way to retrieve a sorted
or limited resultset from CouchDB. This requires any kind of request to the
database that should perform reasonably fast to be planned and anticipated
in advance.

MongoDB

MongoDB is an open-source, document-oriented database developed and
commercially supported by 10gen, with a strong focus on performance and
scalability, written in C++ [10g09b]. MongoDB uses an internal database
format called BSON, an abbreviation for Binary JSON. The structure of
this format is based on JSON, the encoding is binary. The database en-
gine is aware of the BSON format and can inspect objects in the database
for querying and index-building. BSON objects are stored in collections
which roughly correspond to tables in relational databases. MongoDB does
not enforce a schema on the data, the collections are only used for or-
ganizational purposes and for maintaining indices [10g09a]. Queries to a
collection are performed using a Query-by-Example approach [RG02], sup-
porting matches to nested properties and simple numerical comparisons.
MongoDB is accessed via a binary protocol over TCP/IP connections. It
does not use HTTP like Persevere and CouchDB. Drivers exist for multiple
programming languages.

The use of CouchDB was ruled out early because its view mechanism was
too inflexible and expensive to work with under the time constraints of this
thesis, without providing any compensative benefit. From the remaining
candidates, MongoDB was chosen over Persevere. For the purposes of the

48

4.1. CHOICE OF BACK-END SOFTWARE

Kupo prototype implementation both were extremely similar, but Mon-
goDB had better driver support and a simpler structure. The critical factor
for the decision towards MongoDB was the lack of a complete HTTP client
interface in the Narwhal middleware (described in the next section). To
use Persevere, writing a wrapper for Java’s HTTP stack would have been
required in addition to writing the database adapter itself.

Name,
Language

Vendor License Features

Persevere
Java

Dojo
Foundation

BSD Access via HTTP REST API
only, optional schemas, mul-
tiple indices, complex queries
via JSONQuery, JSON-RPC
service provider

CouchDB
Erlang

Apache
Foundation

Apache
License
2.0

Access via HTTP REST API
only, requires prepared views
for advanced queries

MongoDB
C++

10gen Affero
GPL 3.0

Access through native drivers
in many languages, very sim-
ple structure, BSON data for-
mat, collections, multiple in-
dices, query-by-example

Table 4.1: Overview of the three JSON databases considered for use in the imple-
mentation.

4.1.2 The ServerJS Group

During the course of the work on this diploma thesis, Kevin Dangoor
(Mozilla) initiated a workgroup under the name ServerJS that consists of
developers from several companies, institutions and open-source projects
that operate in web development, like Sitepoint, Aptana, Helma-NG, IBM,
Mozilla, Microsoft and Google [Dan09].

The efforts of the workgroup are pursued mainly through a public mailing
list,1 a wiki hosted at Mozilla2 and an IRC channel.3

The aim of the ServerJS group is the definition of a standard library and
coding standards for JavaScript implementations outside the browser, much
like the existing standards in other languages. The ultimate goal is to create
an adapter layer that allows to use conforming programs on all available

1http://groups.google.com/group/serverjs/
2http://wiki.mozilla.org/ServerJS
3irc://irc.freenote.net/serverjs,

Logs are available at http://log.serverjs.org/mochabot/

49

http://groups.google.com/group/serverjs/
http://wiki.mozilla.org/ServerJS
irc://irc.freenote.net/serverjs
http://log.serverjs.org/mochabot/

4.1. CHOICE OF BACK-END SOFTWARE

engines and platforms, and a package management schema that enables the
distribution and reuse of libraries written in JavaScript. Standardization
efforts include:

1. Modules

2. Filesystem API

3. Binary Data Objects (byte arrays and/or strings)

4. Encodings and character sets

5. System Interface (stdin, stdout, stderr)

6. C unified API

Jack/Narwhal

The closely related open-source software packages Jack4 and Narwhal5 al-
ready implement parts of the standards of the ServerJS group. Jack origi-
nally was an adaptation of the Rack6 interface, a protocol similar (in pur-
pose) to CGI, written in Ruby [jac09]. The Narwhal project was later iso-
lated from Jack to separate Jack’s pure web-application related functional-
ity from other parts of the library that provided more general functionality
and became Narwhal [nar09].

At the time development of the framework began (April 2009), Jack/Nar-
whal was released with adapters for Rhino and V8cgi (see Sections 2.4.2
and 2.6.4).

Because of the large number of influential people and a conceivable inter-
spersion of the ideas developed inside the ServerJS group, and the good
applicability of Jack and Narwhal as a middleware, it was decided to incor-
porate the ServerJS ideas into the framework by using Jack and Narwhal
as a basis for the implementation.

4.1.3 JavaScript Engines Compared

For the implementation of an application server, the available JavaScript
engines presented in Section 2.4.2 had to be compared. Since the goal of
implementing the prototype was a proof of concept rather than production
ready software, performance was not the primary concern in a decision for
one of the engines.

4http://jackjs.org/
5http://narwhaljs.org/
6http://rack.rubyforge.org/

50

http://jackjs.org/
http://narwhaljs.org/
http://rack.rubyforge.org/

4.1. CHOICE OF BACK-END SOFTWARE

Considered aspects were:

1. Ease of integration with third party libraries, especially the integra-
tion with MongoDB

2. Ease of building the engine / ease of deployment

3. Developer community / Maturity of the codebase

4. Supported JavaScript features

5. License

Integration of independent packages and complicated build setups can re-
quire a lot of time and effort without actually contributing anything relevant
to a software project. Avoiding this was the primary goal in selecting an
engine.

Even when a lot of build issues are avoided, problems with integration of
other packages are to be expected. A strong, open developer community is
usually the quickest way to overcome such hurdles.

Four engines were compared through these criteria.

Nitro

Nitro (formerly Squirrelfish Extreme) is the bytecode-based, JIT-compiling
JavaScript Engine in Webkit, an open-source browser framework used by
Apple’s Safari Browser on Mac OS X and Windows, written in C++ [Sta08].
Webkit was originally forked from KHTML, the engine behind the Kon-
queror web browser of the KDE desktop environment.

Although Nitro is open-source and licensed under GPLv2, it is not used
much beyond Webkit based browsers and the development community con-
sists primarily of Apple engineers and KHTML developers. Its development
is closely focused on the Mac and Windows versions of Safari. Documenta-
tion is relatively scarce.

TraceMonkey

Like Squirrelfish, Mozilla’s TraceMonkey is a bytecode based interpreter/JIT
compiler. It is the engine in the popular Firefox browser. TraceMonkey is a
name used to differentiate recent versions of the SpiderMonkey engine from
former ones that do not use Trace-Tree-Optimization [GF06], the most im-
portant optimization technique in TraceMonkey [Eic08b].

51

4.1. CHOICE OF BACK-END SOFTWARE

SpiderMonkey was the very first JavaScript engine, originally developed
by Brendan Eich at Netscape [Ham08]. It was originally written in C and
has been ported to C++, albeit keeping the procedural style of the original
code, not using the object oriented features provided by C++. It is licensed
under the Mozilla Public License (MPL) 1.1 / GPLv2.

Because of its age, SpiderMonkey has a large developer community and is
used in numerous software packages for many different purposes. Its age,
however, comes with severe drawbacks. The sourcecode itself is barely doc-
umented, makes extensive use of preprocessor macros and requires a com-
plicated autotools7 setup to build. SpiderMonkey’s main advantage is its
support for all of Mozilla’s JavaScript Extensions to the ECMA standard.

Rhino

Like SpiderMonkey, Rhino is developed and maintained at Mozilla and
supports all of Mozilla’s JavaScript extensions. It is written in Java, able
to interpret or compile JavaScript code and published under MPL 1.1 /
GPLv2.

One of Rhino’s most attractive features is the extremely easy integration of
existing Java libraries. These can be addressed and used “on-the-fly” from
JavaScript without the need to manually write adapters.

Being almost as old as SpiderMonkey, Rhino has a large developer commu-
nity as well but, being written in Java means its codebase is much cleaner
(due to the rigorous syntax and package layout rules of Java). It uses the
Ant build system but thanks to its on-the-fly integration with Java li-
braries, it is possible to integrate external functionality into precompiled
Rhino packages at runtime.

V8

V8 is the youngest of the listed engines and was developed by Google for use
in the Chrome browser. It is written in object-oriented C++ that makes
only light use of the preprocessor and heavy use of templates. V8 (and
many related projects) use the more modern SCons build system8 instead
of autotools.

The code is well documented and released under the BSD License. Despite
its young age, the code quality has attracted many external developers to
V8, resulting in projects that made it especially interesting for the work on

7Autotools is a common name for the classical Unix suite of build tools, consisting of
make, configure, autoconf, automake and libtool

8http://www.scons.org/

52

http://www.scons.org/

4.2. CLIENT-SERVER SCENARIOS

this thesis as many of them revolve around server-side web development,
integrating V8 with web servers via CGI/FastCGI or as apache modules
and providing low-level bindings for file access, I/O, MySQL, gd and other
functionality (see Section 2.6.4).

Considerations

It was relatively clear from the beginning that SpiderMonkey and Squir-
relfish were unlikely candidates for engines to be used as a basis of the
framework. Squirrelfish was a little too exotic with its strong emphasis on
supporting the Safari browser and the tight community around it. Spider-
Monkey had a larger community and was already successful in several other
open-source projects, but its codebase and built system posed too much of
a risk of wasting time on integration issues during early development.

This left Rhino and V8 as the remaining options. Both were supported by
Jack/Narwhal. V8 has a performance advantage over Rhino and was tried
first. After some moderate success in building a dispatcher and a simple
controller, Rhino was given a chance too and finally used for the remaining
development because of two major advantages over V8. First, Narwhal’s
support of Rhino was much more mature than the V8 support and second,
Rhino is much easier to deploy and integrate with other software. This was
most important in regard to the MongoDB integration. Being able to write
the integration of MongoDB’s Java driver in JavaScript was expected to
save a lot of time over writing bindings in C++ for V8.

Reliance on the standards developed in the ServerJS group however will
make the code portable to other engines as these standards and their im-
plementations stabilize.

4.2 Client-Server Scenarios

This section presents several scenarios and examples for communication
between client and server to show how the framework actually handles
commonly occurring, basic tasks, to serve as orientation the the follow-
ing sections describing the framework’s components, and to illustrate the
workings of the implemented API.

53

4.2. CLIENT-SERVER SCENARIOS

4.2.1 Server-side

The processes in this section demonstrate common tasks and describe how
requests are handled from the server perspective. A project management
scenario with projects containing tasks, which are in turn assigned to users,
serves as an example.

Simple Retrieval of a Collection

This scenario describes what happens if a collection of all instances of a
model is requested. Fine details of how the request is processed are only
presented here and left out in the following cases.

1. On the client, the all method is called on the Project model class.
This results in a JSON-RPC request to /projects, calling all on
the server-side.

2. On the server, the Jack middleware calls the Dispatcher ’s handle
method, passing the request environment as an argument.

3. The dispatcher analyzes the URL and looks for a controller called
ProjectController.

4. The dispatcher does not find a ProjectController and looks for a
model named project.

5. A new instance of the ResourceController is created by handing
the project model over to its constructor.

6. The handle method of the controller is called, passing a Jack Request
object as an argument.

7. The handle method is defined in Controller, the common prototype
of CustomController and ResourceController. Inside, request pro-
cessing is prepared (by initializing the request, cookies and sessions)
and the process method of the current controller is called.

8. The process method of the resource controller recognizes the request
as a POST request. The absence of a second part in the URL indicates
that the client is sending a remote procedure call to the Project class
which is set as the resource controllers target.

9. The process method constructs s JSON-RPC object from the con-
tents of the request with all as the method name and no parameters.

10. BeforeProcess callbacks defined on the Project model are executed
in the context of the resource controller before the all method is
called.

54

4.2. CLIENT-SERVER SCENARIOS

11. The all method retrieves a collection of data objects for all available
projects from the database. For each data object in this collection,
a new Project instance is created, its state is initialized to “clean”
and the data object is installed in the instance’s data property. The
resulting collection of initialized Project instances is returned to the
controller.

12. This collection is wrapped in a JSON-RPC response object, returned
back through the call stack and sent to the client.

Simple Retrieval of a Single Model Instance

This scenario describes what happens if an instance of a model is requested
for the first time.

Steps 1-9 are the same as in the previous example, with one exception: The
JSON-RPC request sent to the server contains find as the method name
and "4a3a87e0b98a5e4d343ae72c" as the method’s parameter.

10. The process method constructs s JSON-RPC object from the con-
tents of the request with find as the method name and the parameter
"4a3a87e0b98a5e4d343ae72c".

11. BeforeProcess callbacks defined on the Project model are executed
in the context of the resource controller before the find method is
called.

12. The find method retrieves a data object for the project with the
given ID from the database. A new Project instance is created, its
state is initialized to “clean” and the data object is installed in the
instance’s data property.

13. The instance is wrapped in a response object, returned back through
the call stack and sent to the client.

Simple Authorization

A project should only be accessible if the current user is a member of the
project.

1. The method find("4a3a87e0b98a5e4d343ae72c") is called remotely
on the project class at /project

2. Handling proceeds as in the previous use case until the beforeProcess
callbacks are executed in the resource controller

55

4.2. CLIENT-SERVER SCENARIOS

3. One of the callbacks will inspect the request’s headers and abort
further processing of the request if the authorization requirements
(project membership of the requesting user, identified through HTTP-
Basic authentication headers or session variables) are not met.

4. Aborting request handling is achieved either by throwing an Excep-
tion, which is caught by the Dispatcher, wrapped into a JSON-RPC
error response and sent to the client, or by setting the result prop-
erty of the resource controller to a non-null value. In that case, the
called function will not execute, but the result produced in the be-
foreProcess callback will be returned to the client.

Indirect Authorization

A User wants to access a task. Authorization is implemented via the project-
task association. If the user is a member of the project he should be granted
access, otherwise the request should be rejected.

This is very similar to the previous use case, only the means of verifying
the authorization requirements have to be formulated differently.

Instead of checking credentials against the task model, the association to
the project has to be followed first, and the credentials checked against the
project.

Custom Controller Actions

This scenario illustrates the process of handling a request with a custom
controller.

It is assumed the client wants to authenticate to the application by sending
his credentials to a login controller that generates a session for him.

1. The client requests the /sessions/login URL.

2. The Jack middleware calls the Dispatcher ’s handle method, passing
the request environment as an argument.

3. The dispatcher analyzes the URL and looks for a controller called
SessionsController.

4. The dispatcher finds the SessionsController, creates an instance
and calls the handle method on the instance, passing the request as
an argument.

56

4.2. CLIENT-SERVER SCENARIOS

5. The handle method is defined in Controller, the common prototype
of CustomController and ResourceController. Inside, request pro-
cessing is prepared (by initializing the request, cookies and sessions)
and the process method of the current controller is called.

6. The process method of the SessionsController analyzes the sec-
ond part of the URL, looks for a login method in itself and calls it,
passing the request parameters as arguments.

7. The result of the method call is wrapped in a response object, returned
back through the call stack and sent to the client.

4.2.2 Client-Side

The framework does not specify or implement a client-side part with the
exception of a small bootstrapping procedure and the use of the models on
the client. Implementation of the logic layer is left to the developer who
can chose whichever client-side frameworks he deems suitable.

The scenarios in this section provide some guidance to illustrate how the
few client-side parts of the framework communicate with the server-side
API.

Client-side Startup

1. The browser requests /index.html. Since this URL does not corre-
spond to a controller or model on the server, the dispatcher appends
it to the application’s public directory, locates the index.html file
and returns it to the client.

2. The index.html page includes /clientjs/base.js, a bootstrapping
script that creates a system object for use in the the Narwhal Secur-
ableModules mechanism (see SecurableModules on page 61). It con-
tains functions to load JavaScript modules via XMLHttpRequest.

3. base.js bootstraps a minimal SecurableModules environment to load
sandbox module from the server containing the full SecurableModules
mechanism.

4. When the SecurableModules mechanism is in place, it can be used to
load models and library modules from the server.

57

4.2. CLIENT-SERVER SCENARIOS

Client-side Collection Retrieval

After bootstrapping has finished, models can be loaded. Assuming the client
wants to display all instances of the Project model, the following steps are
executed:

1. The client brings the Project model into scope by requiring the model:
var Project = require(’model/project’).Project.

2. The client calls the all method on the Project.

3. The client-side implementation of all creates a JSON-RPC request
with the all method and sends it to the /project URL on the server.

4. The response from the server consists of plain JavaScript objects.
From these, actual Project instances are reconstructed and returned
back to the client.

Simple Retrieval of an Associated Collection

The client wants to retrieve a collection belonging to another model in-
stance, in this case a list of tasks.

1. The project is assumed to already exist on the client.

2. The client calls tasks.all() on the project to retrieve a list of the
projects tasks.

3. The tasks association proxy converts the all() call to a simple find
call on the Task class, forming the parameters to find so that find
only returns tasks associated to the project.

4. Since the association has not been fetched yet, the project sends an
RPC request to the server at /tasks calling find with the appropriate
parameters and returns the response.

Simple Retrieval of an Element from an Associated Collection

The client wants to retrieve an element from a collection belonging to an-
other model instance, in this case a task belonging to a project.

1. The project is assumed to already exist on the client.

2. The client calls tasks.find("df023573707f404a6cf45500") on the
project to retrieve a list of the projects tasks.

58

4.2. CLIENT-SERVER SCENARIOS

3. The tasks association proxy converts the find call to a simple find
call on the Task class, extending the parameters to find so that it
only returns a task that is both associated to the project and has an
ID of df023573707f404a6cf45500.

4. Since the association has not been fetched yet, the project sends an
RPC request to the server at /tasks calling find with the appropriate
parameters and returns the response.

RPC with a Hidden Model Function

A bank account is requested to transfer money to another account. The
details of the transaction processing should not be visible to the client. The
transfer is therefore realized through RPC.

1. The client-side bank account instance receives the transmit message
with a target account and an amount.

2. The client-side transmit method is either a hard-coded RPC delegate
or generated automatically from a declaration.

3. The transmit method builds an RPC request and sends it to the
server.

4. The addressed resource is /account/123, which is resolved by the
resource controller and secured through a before-filter as described in
the other use cases.

5. The RPC object describes the message and its arguments. It is ex-
ecuted as a method call on the account object corresponding to the
addressed resource.

6. The response is sent back to the client.

7. The account instance on the client returns the result in the RPC
response to its caller.

4.2.3 Unimplemented Scenarios

The scenarios presented in this section have been targeted during the design
but not been implemented. Their description can serve as guidance for how
to implement them.

59

4.3. IMPLEMENTATION OF THE SERVER-SIDE

Form Generation

Rules are required that allow for unambiguous mapping of form fields to
elements of an object tree, so forms can be designed manually. At the same
time automated form generators should provide a quick way to generate
simple forms for object trees by following those rules.

Creation of an compound Object with Associations in a Single Form

The form elements have to be named in a way that allows the object and
its associations to unambiguously be created (see previous section).

1. The client serializes the created object into a JSON-RPC message
and sends it to the server.

2. The controller receives the input object.

3. The Project class’ constructor receives the project-part of the at-
tribute tree.

4. Subtrees corresponding to fixed attributes are stored as such.

5. Subtrees corresponding to associations are handed to a constructor
for the association’s class recursively and then attached to the top
level model.

6. The tree of model instances is recursively saved.

Model Validation for Server and Client/Forms

There are two possibilities to implement client-side form validation. A
model’s validation could be mapped to form fields an executed on the form
or the logic layer could create a model instance from the form data, validate
it and map the errors back to the form.

4.3 Implementation of the Server-side

Processing a request in the framework follows the schema developed in
Chapter 3:

Requests are handled by the Dispatcher’s handle method which uses the
Fetcher to load a custom controller or model identified by the URL. If
a custom controller is found, an action, defined by the second part of the

60

4.3. IMPLEMENTATION OF THE SERVER-SIDE

URL, is executed. If no custom controller is found, a model, matching the
URL, is used to create an instance of the resource controller. Callbacks
defined in the models can be used to influence request processing in the
scope of the resource controller or the model’s life cycle.

All these steps will be described in detail in the following sections. For
completeness, the steps an incoming request takes through the underlying
platform and middleware (Rhino, the Simple HTTP server, Narwhal and
Jack) before being passed to the framework are also explained.

4.3.1 The Underlying Platform: Rhino, Narwhal and Jack

The application server is started by executing Narwhal (see Section 4.1.2)
at the prompt within the Kupo application directory (see Listing A.1 on
page 92). The Narwhal startup binary launches the Rhino interpreter in a
Java virtual machine and instructs Rhino to start the Narwhal bootstrap-
ping process, passing it the remaining commandline arguments. Narwhal
initializes a few basic modules like filesystem (containing filesystem func-
tions) and sandbox (containing the SecurableModules system described in
the next section) before starting Jack, the actual HTTP interface handling
incoming requests.

SecurableModules

The Narwhal environment implements the SecurableModules mechanism
specified by the ServerJS working group. It was originally designed in [Awa,
AK09a, AK09b] and later modified by the working group [Ser09].

To load a module, the developer calls the require function, passing it
the module identifier. The result of this call can be any data structure
that is generated by executing the module, usually a single object (like a
constructor function) or a collection of objects (a library of functions).

Modules are JavaScript files that can contain any code, but only the value
assigned to the (predefined) exports variable is returned by the require
call. Require operates in two steps. First the passed identifier is resolved
to an actual JavaScript source, usually by prefixing the identifier with all
known library paths and extending it by “.js”. The first JavaScript file
found is loaded as a string and wrapped in a function(require, exports,
module, system, system.print){<module text>} (called the factory for
that module) which is then executed. Passed into the function are the
require function to allow subsequent module loading, exports, storing ex-
ported objects, module, containing module identification information, and
system, a collection of platform specific objects and methods.

61

4.3. IMPLEMENTATION OF THE SERVER-SIDE

This mechanism has several benefits:

• It abstracts away the physical location of files. As long as the module
identifiers are formed consistently, they can have any format. Identi-
fied modules can be loaded from the filesystem, a network connection
or a database

• The created factory functions can easily be cached. The module ob-
jects created by the factory functions can be cached as well.

• Executing the code inside the factory function can be implemented
in a way that prevents accidental pollution of the global namespace.

• The SecurableModules implementation in Narwhal additionally sup-
ports sandboxes. These are isolated object spaces which contain in-
stances of module objects that are not shared (see [AK09b]).

• Through upcoming features in either single JavaScript engines or the
ECMAScript standard, running modules in a sandbox can prevent not
only accidental but even deliberate modification of the global object
through restricting or manipulating the scope chain and capabilities
of the factory function. Hints on how this can be achieved today and
in future versions of ECMAScript are given in [AK09a].

After the boot-up and initialization of basic modules (filesystem, sandbox),
Narwhal examines the directory passed through the commandline (the
Kupo application directory), and recognizes the directory as a package
through the information in package.json. It then executes main.js which
continues the boot process by launching Jack.

Jack/JSGI

Jack provides an interface between a HTTP Server and an application writ-
ten in JavaScript, similar to CGI, Rack (Ruby) or WSGI (Python). Jack
consists of the JSGI protocol (JavaScript Standard Gateway Interface)
defining the interface and libraries implementing this protocol [jac09]. Jack
loads the jackconfig.js module which exports the application to be run.
The application takes the form of a function adhering to the JSGI protocol.
JSGI specifies how application functions should interpret their parameters
and what kind of object they should return.

Upon launch Jack instantiates a HTTP server. In the default case, Simple,9

a lightweight webserver written in Java is used. A JavaScript handler func-
tion is installed as the request handler for Simple. When a request comes
in, Jack converts Simple’s request description object into a generic format

9http://www.simpleframework.org/

62

http://www.simpleframework.org/

4.3. IMPLEMENTATION OF THE SERVER-SIDE

and passes it to the application (compare Controller Support Structures
on page 42). In Kupo’s case, the Dispatcher.handle method acts as the
application.

4.3.2 Dispatcher

The dispatcher, which analyzes incoming requests, is kept simple. The
framework does not allow for custom URLs, route recognition is hardcoded
and follows very strict rules. Inside the dispatcher, only the first part of the
URL (up to the first forward-slash /), is examined and a controller or model
with a matching name is loaded (compare Controller Support Structures on
page 42).

The next part of the URL, is examined in the controller handling the re-
quest, but is treated just as strictly. In a custom controller, this part iden-
tifies the action to execute when the HTTP GET method is used. The
schema used by the resource controller to analyze the request is shown in
Table 4.2. Strict rules reduce confusion and prevents the developer from
having to decide on URL schemas for his application.

Method URL Target Parse JSON-RPC from
GET /model/<method> class path and querystring
GET /model/<id>/<method> instance path and querystring
POST /model class request body
POST /model/<id> instance request body

Table 4.2: Request schemas for the resource controller. JSON-RPC requests can
be made either by POST or by GET. The resource controller internally creates a
JSON-RPC object by parsing either the last segment of the requested path and the
querystring for method and parameters, or by deserializing and examining the POST
body.

JavaScript and Static File Delivery

Two exceptions from the standard route resolution are implemented. GET
requests for paths prefixed by /js/ are resolved through the module loader.
The file content of a found module is returned to the client. This feature
is used by the require function on the client to fetch modules via XML-
HttpRequest.

If the request URL matches neither a custom controller, nor a model, it is
appended to the public path of the app (see Listing A.1 on page 92). If
the resulting path resolves to a file, that file is delivered to the client.

63

4.3. IMPLEMENTATION OF THE SERVER-SIDE

4.3.3 Models

Defining models is extremely concise. In the simplest case, a model can
be defined in just one line of code through invocation of the Model(name,
spec) constructor with an empty spec object. This makes persistence avail-
able to its class and instances. Models can be extended with validations or
other information, by adding properties to the spec object. Simple val-
idations are declared in just a single line. For more complex cases, the
developer writes functions to perform the validation. This implements the
ideas described in Specifying Model Behavior on page 36 An example model
declaration was given in Chapter 1, Listing 1.1 on page 18.

During development it was decided to keep internal state of the models ac-
cessible. Prohibiting access to this state would have required complicated
closure constructs that had obscured the code and made custom exten-
sions to the models very complicated. Such measures are inadequate for a
lightweight development approach. Instead the developer is trusted only to
use the provided methods to actually read and change internal state.

By providing respective helpers, the framework enables a declarative defi-
nition of the models’ behavior. Although all validations and callbacks are
functions, the developer does not have to write them manually, instead they
are generated. To validate the presence of a property in an instance, the
return value of Validations.validatesPresenceOf(<propertyname>) is
added to the validations array in the model’s spec object, for example.
This return value is a function that performs the validation.

Associations

Four types of associations were implemented in Kupo, based on associa-
tion types known from other frameworks and entity relationship modeling
[Che76, THB+06]. They are shown in Fig. 4.1. Their definitions are:

1. belongsTo
A declaration that A belongs to B means that there exists a 1 : 1 or
n : 1 association with the foreign key (key of an instance of B) stored
in one or many instances of A.

The B instance belonging to an A instance is found by using the
foreign key in A to retrieve it directly.

2. hasOne
A declaration that A has one B means that there exists a 1 : 1
association with the foreign key (key of an instance of A) stored in
one instance of B. This corresponds to the 1 : 1 case of a belongsTo
association.

64

4.3. IMPLEMENTATION OF THE SERVER-SIDE

The B instance associated with an A instance is found by searching
the database for the instance of B with a foreign key equal to A’s key.

3. hasMany
A declaration that A has many B means that there exists a 1 : n
association with the foreign key (key of an instance of A) stored in
many instances of B. This corresponds to the n : 1 case of a belongsTo
association.

The B instances associated with an A instance are found by searching
the database for any instances of B with a foreign key equal to A’s
key.

4. belongsToMany
A declaration that A belongs to many B means that there exists a
1 : n association with the foreign keys (key of instances of B) stored
in a list in one or many instances of A.

The B instances belonging to an A instance are found by using the
foreign keys in A to retrieve them directly.

Associations are declared in the model’s spec object as shown with a has-
Many association in Listing 4.1. Declarations of the other association types
follow the example.

Associations.hasMany (and the other association declarators) actually
generate a pair of functions that is stored under the given name in the
associations property of the spec object. The first one is the register-
Callbacks(model, assocName) function. It is executed in the Model con-
structor and extends the model’s callback chain with beforeSave/after-
Save callbacks related to the association. The second function, install-
Proxy(instance, assocName), is executed whenever an instance of a model
is created, to instantiate and install a proxy object for this association on
the model instance. In the example in Listing 4.1 installProxy would be
called in the Project.makeInstance method with the new instance and
"tasks" as parameters. This late installation ensures that all state inside
the proxy stays local to the model instance.

Listing 4.1 Declaration of an association
var Model = require(’kupo/model’).Model;
var Task = require(’./task’).Task;
var Associations = require(’kupo/associations’).Associations;

exports.Project = new Model(’project’,{
associations : {
’tasks’ : Associations.hasMany(Task)

}
})

65

4.3. IMPLEMENTATION OF THE SERVER-SIDE

A belongsTo B

A hasOne B

A hasMany B

A belongsToMany B

Model A Model B

b_id

b_id

a_id

a_id

b_ids

b_ids

b_id

n:1 case, reverse of B hasMany A

1:1 case, reverse of B hasOne A

a_id

a_id

Figure 4.1: The four association types implemented in the Kupo prototype. The
arrows indicate the direction the references are stored in. Finding associated instances
works regardless where the reference is stored by either following the foreign keys (be-
longsTo/belongsToMany), or by searching the database for them (hasOne/HasMany).

The instantiated proxy can now be accessed on the model instance via
aProject.task. It provides several methods for managing the association,
for adding, creating or removing members. To perform these tasks, the
proxy manipulates a property in the model instance’s data with a name
generated from the association name (like task_id). It manages the in-
stances state and has an additional, internal state that keeps track of tran-
sient changes to the association. When the instance is saved, the callbacks
installed by registerCallbacks take care of persisting that transient state
and resetting the proxy. The transient state consists of a cache (reducing
the cost of repeatedly fetching the association members), a collection of un-
saved association members and a list of callback-functions to be executed
when the host object (the object containing the association proxy) is saved.

66

4.3. IMPLEMENTATION OF THE SERVER-SIDE

This is best illustrated by an example:

1. The Project model is defined with hasMany(Task). The associa-
tion’s registerCallbacks function installs an afterSave callback
in Project.

2. A new project is instantiated (called pi from now on). The proxy
is initialized with the project instance, Task as the target model,
"tasks" as the association name and installed in pi.tasks.

3. A task t is added to the tasks collection via pi.tasks.add(t).

4. The hasMany definition given above states that the task should carry
the project’s ID in a field called project_id. The project was not
saved to the database yet and thus does not have an ID. Storing the
ID in the task has to be deferred.

The proxy stores the task in its newInstances array and pushes a
function to its internal list of callbacks that updates the task with
the project’s ID and saves it.

5. The project instance is saved via pi.save(). The afterSave callback
then calls this.tasks.afterSave(). Inside the proxy’s afterSave
method, the list of internal callbacks is examined and the callback we
installed in the last step is executed.

It updates the task with the project’s ID (which is available now that
the project has been saved to the database) and saves the task itself.

6. Afterwards, the proxy’s list of callbacks and the newInstances list is
cleared. Requests for members of the association will now be served
from the database.

This would read slightly different for the other association types of course,
but should be sufficient to illustrate the kind of state an association proxy
has to manage. The proxies are kept rather simple in the Kupo prototype.
The associations are prone to corruption in some cases where any of the
instances involved in an association is invalid and does not save properly.
Basic cases of association assignment and storage have been successfully
unit-tested (see packages/kupo/tests/association-tests.js), but ex-
tensive support for recovery from arbitrary cases of failed validations in
associations would have been beyond the scope of this thesis.

67

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

4.3.4 Controllers

Several components implement the Thin Controller concept presented in
Section 3.1.2.

The controllers forming the adapter layer (see page 38) are kept very slim.
A common Controller class, ancestor to both the CustomController and
the ResourceController, performs the preparations described in Con-
troller Support Structures on page 42, setting up the request object, cookies
and session, before the actual request processing begins.

The resource controller analyzes the request as described in the previous
section and executes the remote call on the addressed target (either an
instance or a collection of objects). Before doing so, the model’s callbacks
have the opportunity to manipulate the request and response object to
influence the request processing sequence.

Because of this simple structure, the amount of code required to expose
a model’s methods as remote procedure calls is kept to a minimum, al-
lowing the developer to concentrate on the business aspects of his models.
This is achieved by making the models aware of their context and their
integration into the resource controller. This awareness was constructed
deliberately, deferring the software engineering principle of separation of
concerns [Dij82] and favoring ease of implementation for the developer (see
Resource Controller Integration on page 45).

In cases that can not be handled through the resource controller’s archi-
tecture, custom controllers can be used. The first segment of a URL ad-
dresses a custom controller. Should a model of the same name exist, the
custom controller takes priority during routing. Action and parameters are
retrieved by extracting a JSON-RPC object from the request (either GET
or POST). Remote procedure calls sent to a custom controller invoke its
manually defined actions.

4.4 Implementation of the Client-side

The framework design is focused on the server-side of web applications
and leaves implementation of client-side operations open (the logic layer,
compare Section 1.6.1). Still, implementing some aspects of client-side de-
velopment was necessary to enable server-client communication.

Especially the models have to be made available to the client, so they can be
reused. Since server-side aspects of the models should stay on the server,
protected from public access, the definition of models has been split as
described in Section 3.1.3.

68

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

4.4.1 Client-side Module Loading

Access to the model definitions is provided through the SecurableMod-
ules mechanism used in the Narwhal framework and remoted to the server
through a special URL handled by the dispatcher.

Narwhal is written platform-agnostic. The only interface to the underlying
JavaScript engine and environment is provided via a special system object,
created during the bootstrapping process. This object contains several iden-
tifier variables and basic filesystem functions used by the Module loader,
read and isFile.

On the client, usually a browser, part of the bootstrapping was emulated in
/public/clientjs/base.js. This script constructs a system object that
uses the XMLHttpRequest API to implement read and isFile. Both func-
tions send requests to the /js path on the server which are then handled
and answered by the server-side module loader (see 4.3.2).

4.4.2 Splitting

Giving clients access to the code defining a model’s behavior, without ex-
posing secret methods, required splitting the code into a generic part that
can safely be exposed and a location-specific part (server-only or client-
only). At the same time, model code is split into an abstract part, equal for
all models and a concrete part that is defined by individual models designed
by the developer. This results in a two-dimensional inheritance structure
shown in Table 4.3.

Additional goals for implementing this structure were:

1. Ease of use – The developer should write models in a generic fashion
and be able to easily extend them with server-specific aspects by
manipulating the generic model in a way natural to JavaScript, by
removing or adding properties to the objects the model consists of.

2. Avoiding unnecessary code – The developer should not be re-
quired to write his model in a split fashion. If he wants to use a single
version of his model for both server and client, he should only have to
maintain a single file. If a split approach is taken, the code necessary
to define the server-side aspects should be kept to a minimum.

Implementing a two-dimensional inheritance structure that accomplished
both these goals was possible through the exploitation of JavaScript’s in-
heritance and function application mechanisms. The complex relationships
between classes are shown in Fig. 4.2. Two steps are required for the im-
plementation, described in the following sections.

69

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

Basic version extended by a
concrete implementation

Location-specific version
extended by a concrete
implementation

Models extended with
specific persistence aspects
and/or secret methods

Basic Aspects shared by all
versions of all models

Generic Specific

Location

Co
nc

re
te

Ab
st

ra
ct

Im
pl

em
en

ta
tio

n

Table 4.3: Two different directions of model inheritance: Location based (generic
or client-/server-specific) and implementation based (abstract or concrete). The arrow
shows the way through the inheritance chain taken by a concrete, server-specific model:
first the generic model is extended location-specific, then the model is extended with
a concrete implementation.

Inheritance Structure

First, all objects related to models had to be separated into a generic
and a specific part. The generic ClassPrototype contains methods un-
related to persistence that operate on a class-level. To obtain a location-
specific ClassPrototype, the generic one is inherited and extended with
the find/all persistence methods. The CommonInstancePrototype pro-
vides methods shared by all models. To create its location-specific version,
it is extended the same way as the ClassPrototype.

A concrete model is created by calling the Model() constructor which cre-
ates an object inheriting from the ClassPrototype and extends it with a
name and the spec object, describing its behavior (see Section 1.6.2). The
last step in creating the Model is the creation of the Model’s instance pro-
totype by calling the InstancePrototype(model) constructor and storing
the resulting instance prototype in the same-named property on the model.

To obtain location-specific versions of the concrete model and instance pro-
totype, these constructors described in the last paragraph are replaced by
ones that use the location-specific versions of Class- and CommonInstance-
Prototype. The constructors themselves apply their generic counterparts
to the new object in construction, effectively “subclassing” them (this is
represented through the term pseudo-super in Fig. 4.2).

70

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

Finally, they execute location-specific initialization statements. In the server-
specific Module constructor for example, this means overwriting the generic
InstancePrototype previously generated by the generic Module construc-
tor with the server-specific InstancePrototype and installing a connection
to the database. In the InstanceProtoype constructor, no location-specific
statements are required in the current version.

Loading the Structure

To work with these two versions of models, the SecurableModules loader
provided by the Narwhal framework had to be extended. This was done by
specifying a new loading preference.

Modules are usually identified by their filename in relation to the search
paths. Kupo’s model module, for example, is identified by kupo/model.
These identifiers are provided without a filename extension. The loader
checks wether a file is available by trying to attach different extensions to
the identifier. First, the blank string is used, then the ".js" extension. By
modifying the loader to try a ".server.js" or ".client.js" extension
before ".js", specifying locations-specific versions of any module can be
achieved by naming the module’s file accordingly.

To reference generic module versions from within a location-specific module,
the module’s identifier can be suffixed with the .js extension, causing the
loader to fetch the generic module (by extending the identifier with the
blank string which produces a match before the other extensions are tried).

Splitting and Loading Combined

The way a developer now implements a split model (Project in this ex-
ample) is to define a generic version in app/model/project.js by fetching
the Model constructor via require(’kupo/model’). The developer invokes
the Model constructor and exports the resulting model.

He now creates a second file project.server.js which loads the generic
Project through require(’./project.js’) and modifies it by adding server-
specific methods.

To work with the Project model, the framework loads model/project
(Step 1 in case a of Fig. 4.3), which the loader resolves to the server-specific
version. Inside project.server.js, the generic project is loaded (Step 2
of case a). In project.js, requiring kupo/model loads the abstract, server-
specific model (Step 3) which is then extended to a version that has the
server-specific aspects of the abstract model (its database persistence) but
is missing the server-specific Project extensions.

71

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

Ab
st

ra
ct

/G
en

er
ic

Co
nc

re
te

/G
en

er
ic

Ab
st

ra
ct

/S
pe

cifi
c

Co
nc

re
te

/S
pe

cifi
c

rp
cC

al
la

bl
e(

)
ca

llB
ac

k(
)

in
st

al
lC

al
lb

ac
k(

)
re

gi
st

er
As

so
cia

tio
nC

al
lb

ac
ks

()
in

st
an

ce
Pr

ot
ot

yp
e

Cl
as

s
Pr

ot
ot

yp
e

Na
m

e
Sp

ec
ia

liz
at

io
n

Cu
st

om
M

et
ho

d(
)

Co
nc

re
te

M

od
el

In
st

an
ce

 M
et

ho
ds

In
st

an
ce

 P
ro

to
ty

pe

da
ta

st
at

eIn
st

an
ce

co
nc

re
te

M
od

el
 =

 n
ew

 M
od

el
()

- s
et

 N
am

e
- s

et
 S

pe
cia

liz
at

io
n

- r
eg

ist
er

 c
al

lb
ac

ks
- i

ns
ta

ll i
ns

ta
nc

eP
ro

to
ty

pe

* ad
d.

 m
et

ho
ds

/d
at

a

Co
nc

re
te

M

od
el

* sa
ve

()
re

m
ov

e(
)

Co
m

m
on

 In
st

an
ce

 P
ro

to
ty

pe

* ad
d.

 m
et

ho
ds

/d
at

a

In
st

an
ce

 P
ro

to
ty

pe

da
ta

st
at

eIn
st

an
ce

m
ak

eI
ns

ta
nc

e(
da

ta
, s

ta
te

)
- c

re
at

es
 In

st
an

ce
 w

ith
 d

at
a

an
d

st
at

e

Re
pl

ac
e

M
od

el
()

co
ns

tru
ct

or
:

- c
al

l t
he

 o
rig

in
al

 v
er

sio
n

(p
se

ud
o-

su
pe

r)
- r

ep
la

ce
 th

e
in

st
an

ce
Pr

ot
ot

yp
e

wi
th

 t
he

 s
pe

cifi
c

on
e

Re
pl

ac
e

In
st

an
ce

Pr
ot

ot
yp

e(
) c

on
tru

ct
or

:
- c

al
l t

he
 o

rig
in

al
 v

er
sio

n
(p

se
ud

o-
su

pe
r),

- h
as

 th
e

ex
te

nd
ed

 C
om

m
on

In
st

an
ce

Pr
ot

ot
yp

e
 a

s
its

 p
ro

to
ty

pe

ex
te

nd
/

ov
er

wr
ite

se
t/g

et
/id

/u
pd

at
e/

ta
in

t/e
ra

se
/

va
lid

at
e(

)
in

st
al

lA
ss

oc
ia

tio
nP

ro
xie

s(
)

Co
m

m
on

 In
st

an
ce

 P
ro

to
ty

pe

m
ak

eI
ns

ta
nc

e
is

us
ed

by
 fi

nd
/a

ll

th
is.

in
st

an
ce

Pr
ot

ot
yp

e
=

ne
w

In
st

an
ce

Pr
ot

ot
yp

e(
)

- e
xt

en
ds

 th
e

CI
P

wi
th

 in
st

an
ce

-m
et

ho
ds

* fin
d(

)
al

l()

Cl
as

s
Pr

ot
ot

yp
e

Cl
on

e
an

d
ex

te
nd

 w
ith

pe
rs

ist
en

ce
 fu

nc
tio

ns
 (s

av
e/

re
m

ov
e)

Cl
on

e
an

d
ex

te
nd

 w
ith

pe
rs

ist
en

ce
 fu

nc
tio

ns
 (fi

nd
/a

ll)

Cr
ea

tio
n

th
ro

ug
h

co
ns

tru
ct

or
 in

vo
ca

tio
n

Lo
ca

tio
n-

sp
ec

ific
 e

xt
en

sio
n

Pr
ot

ot
yp

e
re

la
tio

n

Le
ge

nd

Figure 4.2: Two-dimensional inheritance in the framework. The schema combines
location- and model-specific refinement of the base classes.

72

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

At this point, a hybrid project model exists that is neither purely generic nor
fully specific. The model functionality (persistence etc.) is server-specific,
but the project traits are still generic. This hybrid however is never used
directly. Only the version obtained through project.server.js (Step 1),
extending this hybrid with the project’s server-specific traits, is used.

If a model does not have different location-specific implementations, re-
quiring the Project model will initialize it differently (case b of Fig. 4.3).
Requiring model/project (Step 4) will directly provide the generic project
module. Inside, requiring kupo/model will still provide the generic model
module (Step 3).

Because of the appearance of the hybrid model in Step 3, this loading
mechanism seems complicated at first, but since this peculiarity can be
ignored in practice, code splitting is easy and enables the developer to
describe his models with minimal effort.

model.js: Definition of an abstract, generic model

model.server.js: Model extended location-specific

project.js: Model extended to generic Project

project.server.js: Project extended location-specific

Used by framework/client

require('./model.js')

require('kupo/model') == require('kupo/model.<loc>.js')

require('./project.js')

require('model/project') == require('model/project.<loc>.js') require('model/project.js')

Generic Model

Specific Model

Hybrid Project

Specific Project

Current Object File content

a)

4

3

2

1

Used by framework/client
b)

Figure 4.3: The split model definitions and the modified module loader work together
to obtain a concrete, location-specific Project model by inserting additional steps into
the loading sequence on the server. The term <loc> in the require statements rep-
resents either “server”or“client”, depending on the actual location. a) Sequence for a
model that has location specific traits. b) Sequence for a model that does not have
location specific traits.

4.4.3 Support for Nested Structures

Support for nested structures and the combined transfer of multiple asso-
ciated models in a single request, as described in Associations and Nested
Data on page 46, was not implemented in Kupo. Doing so would have
required a great amount of work without providing much insight.

73

4.4. IMPLEMENTATION OF THE CLIENT-SIDE

Serialization of object graphs is a solved problem with solutions for Java-
Script/JSON already existing [Zyp08b]. Restoring the associated objects
from a serialized JSON representation would be trivial. Supporting deep
associations for validating and persisting objects to the database would
require a more robust implementation of the associations (see Section 4.3.3).

4.4.4 Automated Delegation

Automated delegation, that is, an automatic generation of client-side meth-
ods that delegate their execution to a method on the server, was not im-
plemented in Kupo due to time constraints. Such a feature would not be
very complicated to realize, however.

Methods to be delegated could be declared in a list in the spec object,
similar to the callables array. Upon initialization of the model, for each
name in this list a method would be generated by following the schema in
Listing 4.2.

Listing 4.2 Template for generating an automated delegation

model[<methodname>] = function() {
var args = Array.prototype.slice.call(arguments);
return this.model.connection.call(<methodname>, args)
}

4.4.5 Example Application

To illustrate how a client and the server can work together, a small example
application was created, using the project and task models that served to
illustrate code examples throughout the entire thesis.

The application initializes modules client-side, loads projects from the server,
loads tasks from the server, and allows to create and validate tasks and as-
sign them to projects. After starting Kupo and MongoDB, it it accessible
by opening http://localhost:8080/index.html in the browser .

The example does not use a proper MVC separation on the client-side since
this is out the scope of this thesis. Instead it uses a small HTML skeleton
and the jQuery framework to load and display models. Data is injected
directly into the DOM.

74

5
Chapter 5

Evaluation

In Chapters 1 and 3, motivations for creating a new framework based on
server-side JavaScript were explained and developed into a design. To eval-
uate this design, its aspects need to be examined in combination as well as
individually and compared to existing approaches.

5.1 Goals and Design

In Chapter 1, a number of goals was formulated that aimed to solve the
problems that still plague web development despite the great progress pro-
gramming tools in that area have made in recent years.

The problems identified were

• A heterogenous mix of languages

• Redundancy in code

• Necessity of “Glue Code”

• Complexities of Object-Relational Mapping

These problems are all interrelated and have their origin in the mix of
different languages used in web development. Using JavaScript on the server
opened up the possibility to create a design free of these problems through
the integration of four corresponding goals formulated in section 1.4.

75

5.1. GOALS AND DESIGN

5.1.1 A Single Language

Using only JavaScript for all server-side aspects of the framework and the
client-side of a small example app (see Section 4.4.5) was successful.

The Rhino engine enabled using the MongoDB Java driver directly in Java-
Script code in a seamless way. Given more time, it would have easily been
possible to implement a native JavaScript driver for MongoDB or to use the
HTTP interfaces of CouchDB or Persevere. Querying the database using
JavaScript and working with the returned objects isn’t completely seamless
due to limited flexibility in MongoDB’s Query-by-Example approach and
a minor mismatch between JSON and the BSON format. These problems
are negligible implementation details though, and not fundamental issues.

On the client, jQuery was used to demonstrate how to write a control layer
without the use of a separate template language, by directly injecting data
from the models into the DOM.

Some other JavaScript based frameworks naturally achieve using a single
language too, as long as a JSON database is used. This is the case in Per-
severe (when used as an application server) and Helma but not in Aptana’s
Jaxer, which makes extensive use of SQL and HTML.

Several other, non-JavaScript frameworks try to prevent the developer from
using multiple languages too. Ruby on Rails, for example, has facilities to
generate client-side JavaScript using Ruby Code (RJS) and hides much of
its relational database interaction behind a powerful ORM layer (ActiveRe-
cord) [THB+06]. The Google Web Toolkit and Microsoft’s ASP.NET allow
developers to write web applications using only a single language. Both
achieve this goal by compiling the host language to HTML and JavaScript,
adding additional layers of computation and complexity to the software
stack (see 1.5).

5.1.2 Code-Reuse Between Server and Client

Using the models on the client has yielded the desired effects. Validations
defined on a model can be applied to an instance derived from form fields
and give the user feedback about missing data before sending the instance to
the server. Working with full-featured models on the client further enables
access to associations and custom methods and improves data integrity in
the instances by providing a clearly defined interface instead of pure data
objects.

Creating location-specific versions of a module, by defining them in terms of
their differences, works well in JavaScript because of the language’s ability
to freely extend or modify defined objects.

76

5.1. GOALS AND DESIGN

Of the other examined JavaScript frameworks, only Jaxer implements a
form of code sharing. Helma and Persevere provide definition of models on
the server-side, but Helma’s general approach is more traditional in keeping
more application code on the server, and Persevere limits its models to
offering JSON-RPC services and schema definitions. Trimpath Junction
offers the possibility to emulate an application server by actually executing
server-side code in the browser [jun09]. Google Web Toolkit allows to use
the same models (written in Java) for client- and server-side aspects of
an application, compiling the client-side code to JavaScript for deployment
[Goo09a].

5.1.3 Elimination of Glue Code

This aspect is harder to evaluate than the other goals since no complex
enough application was developed to reveal how much glue code would
have to be written and which of that glue code would have been avoided
by providing additional support in the framework.

To be able to make a statement on this issue, several independent applica-
tions would need to be evaluated. Generally, however, it can be seen as a
rule of thumb that increasing complexity always increases the need for con-
figuration [vGB01]. In that regard, the simple design devised in this thesis
has an advantage, a large part of reducing glue code however would have
to be achieved through libraries for dealing with common tasks.

An example for JavaScript’s special suitability towards this goal is the au-
tomated delegation drafted in Section 4.4.4.

It should also be regarded that not all of the server-side complexity has been
avoided, but that some of it has been shifted to the client, into the logic
layer (see Section 3.1.2) since control flow management for the application
still has to be implemented somewhere.

Reduction of glue code and extremely easy ways to implement common
tasks are what made the Ruby on Rails framework popular [Dum05]. Its
strategy towards using conventions and metaprogramming spawned inspi-
rations and imitations all over the web development community. Trimpath
Junction, for example, is a clone of Rails implemented in JavaScript on top
of Helma (see page 33).

How well exactly other frameworks reduce the need for glue code is hard
to judge without actually using them but some general observations and
assumptions can be made: Java as a static, compiled language is largely un-
suitable for elimination of glue code. There exist many approaches towards
automatically generating glue code [vGB01, DGHK05], but since the entire
application’s configuration has to be known at compile-time, flexibility of

77

5.2. USE CASES REVISITED

Java-based stacks is still limited. Most dynamic, interpreted languages used
for web development (PHP, Python, Perl) do not have this problem. Since
the features and the MVC approach taken by Rails have become popular,
many frameworks in these languages have adopted at least some of them
(in [rai06], several PHP frameworks are described).

5.1.4 Tight Integration of a JSON Database

Integrating MongoDB into the framework as a persistence layer was success-
ful. MongoDB’s simple API structure and its Query-By-Example approach
to locating objects were a good match for the frameworks simplicity. Perse-
vere’s additional features are mostly optional and it could have been used
just as well or even better as MongoDB, assuming a HTTP client interface
would have been available in Narwhal.

The general direction away from relational databases has not turned out to
be a disadvantage. Similar to the avoidance of glue code, a more convinc-
ing statement the use of a JSON database would require more real-world
programming experience than possible in the scope of this thesis.

Experiences other frameworks had with JSON databases are not easy to
find, since non-relational databases are not used widely. Because the JSON
format specifies just a few simple data types and structures that are avail-
able in any language, integration of a JSON database can be expected to
be simple for other languages too. Using JavaScript for the application
server has the added benefit of absolutely no impedance mismatch between
host- and database-language, avoiding the need for an additional conversion
layer.

Although using a JSON database simplifies database operations compared
to using a traditional relational database, performing queries and save op-
erations manually is still necessary. In this regards, the combination of
JavaScript and a JSON database leaves room for improvement toward even
closer integration.

5.2 Use Cases Revisited

In Section 1.3, several use cases were presented that pose challenges to
existing approaches in web application development. It was shown how
the abstract problems in Section 1.2 caused the challenges. In this section,
it will be examined how achieving the formulated goals, described in the
previous section and in 1.4, helps to overcome these challenges and how
other frameworks and their solutions perform in this regard.

78

5.2. USE CASES REVISITED

5.2.1 Model Validation

Validating models in multiple languages at different stages of the applica-
tion involves the danger of having implementations of the validation rules
diverge. The abstract design deficiency behind this case is the use of mul-
tiple redundant implementations in different languages.

To solve this problem, code sharing can be used. By implementing models
and their validations in JavaScript, and using the code for models on both
the server and the client, only a single implementation of the validation
rules is used. A practical implementation for validating forms on the client-
side could create a model instance from form data, let the instance validate
itself, and use generated validation errors to mark the respective form fields
as invalid to the user.

When code sharing is not possible because the server-side of the applica-
tion is not implemented in JavaScript, the remaining possibilities for form
validation are to either submit the form regularly or to use AJAX-based val-
idations. Both variations send the form data to the server. In AJAX-based
validation, the server validates the data and sends information about errors
back to the client in an the response. When AJAX is not used, the server
can render the entire page again, marking invalid fields to the user. In each
case the request to the server carries the overhead of a HTTP roundtrip
and the server-side data processing.

Another possibility is to generate client-side form-validating JavaScript
from the validations defined in the server-side models. This is, however,
impossible with custom, imperative validation functions and only works
with declarative, interpreted validations.

5.2.2 Data Transformation

The multiple stages of data transformation in existing web application
stacks, between the database in the back-end and the DOM in the frontend,
involve a lot of expensive string processing, contain impedance mismatches
and open up potential weak spots for injection attacks. Multiple design
deficiencies of traditional web application frameworks are involved in this
use case: Object-relational mapping is required to convert data from the
relational to an object-oriented structure. Different languages require data
conversion between them. The conversion code is glue code because it does
not immediately contribute to solving the problem the application was de-
signed for.

Using JavaScript as a single language and a JSON database as the database
remove many conversion steps. The application can work with JavaScript
objects all the time and only has to serialize data to JSON strings for com-

79

5.2. USE CASES REVISITED

munication between server and client. This also eliminates opportunities
for injection attacks. Keeping the server lean and shifting most of its tasks
to the client better distributes the remaining data processing (HTML tem-
plates, for example, that do not have to be rendered on the server anymore).

As long as multiple languages and relational databases are involved, most
data transformation steps simply cannot be avoided. Some of the JavaScript-
based frameworks examined in Section 2.6 use JSON databases instead of
(or in addition to) relational databases, yet most of them still perform
front-end rendering tasks on the server and send complete HTML pages to
the browser. Apatana’s Jaxer adds even more transformation steps, since
it parses HTML templates into a DOM before processing server-side Java-
Script. The modified DOM is converted back to HTML afterwards, before
being sent to the client.

The solution used in the framework designed in this thesis leaves room for
improvement. Although removing transformation steps removes potential
points for injection attacks, the use of JavaScript increases the possible
damage a successful injection could deal. A malicious function injected into
the framework could potentially modify essential functionality. Extra cau-
tion has to be taken to prevent these injections.

Even though a lot of the transformation steps can be successfully removed
by using JavaScript and JSON, it is desirable to additionally remove the
transformation between the database and the JavaScript interpreter. To
move data between the running application and the database, JSON strings
are used. A tighter integration between the database and the interpreter
could remove this step. This would require the implementation of a database
driver on the JavaScript interpreter level.

5.2.3 Exposure of Objects Through APIs

Creating web services by providing an interface to an application’s models
through the control layer can result in repetitive, redundant code if very
similar actions have to be written for many exposable methods of every
model in the application.

To solve this problem, the designed framework uses the resource controller,
a single controller, responsible for exposing the methods of all available
models to clients in identical ways. This is made possible by providing
strict standards for the models’ behavior. The separation of responsibili-
ties between models and controllers is relieved in a clearly described way,
by storing controller callbacks and information about the availability of
methods in the model’s definition. This avoids the need for additional files
that merely contain information for handling remote procedure calls and
emphasizes the framework’s focus on the object exposure via JSON-RPC.

80

5.2. USE CASES REVISITED

Other frameworks are providing similar features. Ruby on Rails’ support
for REST popularized the attitude of treating web applications and web
services as equal, and inspired the behavior described in the previous para-
graph. Rails has always provided strong conventions for the behavior and
structure of models and controllers, even more after adopting REST. The
resource controller in this thesis’ design takes the ideas in Rails’ popular
resource controller plugin further.

Of the other JavaScript based frameworks, Persevere is especially notable.
Its exposure of model methods as remotely callable procedures is similar to
the resource controller, the models in Persevere, however, are intended for
server-side use only and not for use on the client.

The main problem with the resource controller is the possible inflexibil-
ity of its mechanics. This can unfortunately only be properly evaluated in
extensive practical tests.

5.2.4 Dynamic Object Properties

Objects with dynamic properties of unknown, arbitrarily nested structure
can not easily be mapped to relational databases. In extreme cases, doing
so can degenerate a relational database to a key-value store and require so-
phisticated support from object-relational mapping facilities. Additionally,
complex data representations on the client-side (as JavaScript objects) need
to be serialized and converted to objects in the server-side implementation
language. As in the last example, such conversion requires glue code and
additional processing resources on the server.

Again, using a JSON database avoids the need for object-relational map-
ping. JavaScript on the server-side and identical representations of objects
by using the same models on client and server makes conversion between
languages unnecessary.

Frameworks written in other languages can free themselves from some of
the mentioned problems by using non-relational databases as well. However,
they still have to find a way to convert complex objects from JavaScript to
the data structures offered by their host language.

5.2.5 Storage and Retrieval of Compound Objects

Storing multiple, associated objects was identified as a special case of the
Dynamic Object Properties problem. To store instances together with in-
dependent, associated objects, the compound structure has to be disassem-
bled, and their parts stored independently in the database. Explicit associ-
ation information is needed, to reassemble the compound objects later.

81

5.3. GENERAL ARCHITECTURE EVALUATION

Storing multiple associated objects at once means validating them, generat-
ing keys and storing those keys as association keys. These tasks have to be
performed in a sequence that does not create dependency problems during
validation or foreign key assignment. Common lightweight web application
frameworks do not offer support for this complex procedure and prefer sim-
pler data structures, not least because the other problems described earlier
grow with the complexity of handled objects as well.

In simple cases, storing can be done manually, by specifying the required
steps explicitly in the application. Since multiple models are involved, this
poses the risk of creating ad-hoc code in unsuitable locations. Because it can
be unclear where exactly to specify these steps, an incautious (or frustrated)
developer might put related code into the application’s control layer or into
the wrong model, hurting the application’s maintainability.

The code required to perform these steps is glue code the developer has to
write manually, which to avoid is one of the goals of the design developed
in Chapter 3. Additionally, without support for storing compound objects,
the usefulness of the resource controller is limited to very simple operations
involving single objects. The use of JavaScript on the server and a JSON
database can only supports this measure and it not essential to it.

Therefore, such a mechanism was not implemented in the example frame-
work. For the time constraints, the amount of work required would have
been too great, without yielding useful insight.

Since version 2.3, the Ruby on Rails framework supports a feature called
Nested Forms that allows its ActiveRecord ORM layer to perform database
operations on compound objects [Koz09].

5.3 General Architecture Evaluation

Overall the architecture designed in this thesis can be considered successful
and promising in regard to an exploration where web development might be
headed. As additional benefits of the ones lined out in the previous sections
can further be listed:

• Dynamic applications become easier to implement, because the de-
veloper can concentrate entirely on the client-side of the application
and the definition of models.

• The distribution of responsibilities between client and server becomes
clearer. The server provides the API and the client implements the
user interface on top of it.

82

5.4. PERSPECTIVES AND PROBLEMS

• By shifting control flow management and rendering from the server to
the client, computing power is better distributed, freeing up resources
on the server.

An architecture this opinionated of course comes with some expenses:

• Control over the program is given up. The API on the server has to
be consistent and secure to prevent invalid data to be stored since the
controllers and models running on the client can not be trusted.

• Incompatibilities between browsers’ JavaScript implementations are
less severe than just a few years ago but they still exist. In gen-
eral, running the application in the browser means running it in an
unknown, always changing environment. Adjusting for this requires
additional work from the developer.

• The openness of JavaScript makes the server-side architecture more
dynamic at the expense of stability. Since an exploit injected into
the server process can potentially alter the entire program, special
countermeasures have to be taken to prevent injections. Developers
need to be aware of that.

Balancing security and flexibility always involves tradeoffs. It depends on
the priorities of the developer what kind of approach is best suited for his
application. It can also be expected that, as JavaScript matures (such as
with the first steps taken in ECMAScript 5), the language becomes more
robust and better suited for large scale application development than today.

5.4 Perspectives and Problems

The combination of the new concepts lined out in the previous sections
serves as a strong motivation to shift more and more parts of web appli-
cations to the client, turning the server-side part of the application into a
pure web service.

From this, applications benefit in two ways. By reducing internal coupling
between the front-end and the back-end of the application, maintainabil-
ity is increased. A (possibly public) API is created adding value to the
application itself and the web service ecosystem it exists in.

83

5.4. PERSPECTIVES AND PROBLEMS

5.4.1 Remaining Tasks

The concepts devised in this thesis and their implementation are very pro-
totypical. A lot of work remains to be done to better evaluate the design
and to solve the remaining problems. In this section, these tasks will be
presented by topic and subsequently prioritized in an overview.

Testing and Evaluation

The concepts and the implementation have to be tested much more thor-
oughly. Ideally, the framework would be used to create several small appli-
cations to reveal weak points and missing functionality. At the same time,
functionality would have to be developed further to gain insight in how the
concepts perform in practice.

Concrete questions that could not be answered satisfactorily yet include:

• How much glue code is actually avoided by using strict conventions?

• What missing support functionality would have to be provided to ease
the implementation of common tasks?

• Is the resource controller really practicable? Is it too restrictive?

Integrating Platform and Database

Just like Narwhal, the Kupo implementation was intended to be run on
different JavaScript engines. The current limitation to Rhino simply had
practical reasons. Making Kupo platform independent would fulfill its orig-
inal intention.

Integration of a JSON database needs to be improved. MongoDB was useful
for a prototype, but peculiarities of its BSON format and limitations of the
Query-by-Example method would have to be overcome for a practical use
of the framework. Writing a native driver in JavaScript or modifying the
existing adapter to the Java driver would achieve this.

Persevere’s JSONQuery features make it an attractive candidate for a
database back-end too. Integrating Persevere into the framework could be
done by writing a HTTP driver for its REST interface or by integrating
its engine directly into the framework via Rhino’s LiveConnect feature. A
port of Kupo to v8cgi could make use of v8cgi’s HTTP implementation.

In a next step, the need to generate and parse JSON strings for com-
municating with the database could be removed. With a database driver

84

5.4. PERSPECTIVES AND PROBLEMS

tightly integrated (that rules out using MongoDB’s Java driver or Per-
severe’s REST API), the database’s internal representation can be used
to directly generate JavaScript objects. In the other direction, JavaScript
objects could be converted directly into the database format without an
intermediary string representation.

Should this kind of integration be successful, moving to a completely seam-
less database integration, persisting objects transparently, becomes a pos-
sibility. Accessing the database at the interpreter level would open up the
chance to enhance objects with persistence capabilities.

Security

JavaScript does not have security features. In the browser, this is not a
problem, since scripts are executed in a sandbox with very limited possibil-
ities for doing damage. On the server, a malicious function injected into the
framework can potentially alter any aspect of the system, access filesystem
functions and lead to serious corruption of the entire application server.

To prevent this, protection mechanisms against injections have to be de-
signed and implemented. These could be based on features of the used
engine, on the SecurableModules system [AK09a, AK09b], or on new secu-
rity features in upcoming JavaScript standards like ECMAScript Harmony
(informal name) [Eic08a].

Missing Features

Some features were planned for inclusion into the framework prototype but
could not be realized (see Section 4.2.3).

Support for nested structures and compound objects is a solved problem, in
theory, but requires much effort to efficiently implement. This functionality
would require extensive unit tests and needs to be examined in regard to
its actual usefulness in application development.

Automated delegation of model methods only available on the server was
not implemented due to time constraints. This is not a complicated task,
however, neither in theory nor in practice.

A lot of helpers for solving common tasks and avoiding glue code are still
missing. This is mainly because judging which features are actually needed
and which are not, is hard to do in an abstract scenario. The needed helpers
would be most efficiently identified during implementation of a more com-
plex application. Some helpers that are definitely missing, are authentica-
tion and authorization assistants.

85

5.4. PERSPECTIVES AND PROBLEMS

Examination of the Client Side

This thesis was focused on the server-side of web application development.
Yet a lot of the integrated concepts are tied closely to the idea of shifting
responsibilities that are actually user interface related, but traditionally
performed on the server, to the client. How the client would actually per-
form its new tasks was left largely unanswered.

It is generally not a disadvantage to leave the choice of a client-side frame-
work to the developer, but it needs to be examined where this thesis’ design
requires additional client-side support and what this support will be.

Overview

Absolutely necessary are support for automated delegation, authorization
and authentication helpers, and improving the MongoDB integration.

Reasonably performing further tasks would require the development and
examination of a more complicated application with the framework. Espe-
cially the resource controller needs to be evaluated and missing helpers for
common tasks need to be identified.

Over the course of the implementation of an application, the potential need
for stronger client-side support will likely be revealed.

Support for nested structures and compound objects requires cautio to
implement properly. The implementation will likely be easier with improved
database support, that is, the integration of Persevere and elimination of
JSON strings as an exchange format for the database.

Security is not essential for gaining insights into the advantages and disad-
vantages of the architecture but a necessary feature, should the framework
ever be used in a public environment.

An integration of the database at the interpreter level is pure speculation
at this point.

5.4.2 Future Work

Several issues remain that were not solved in the work on this thesis. To
improve client-server communication beyond simple remote procedure calls,
new ways for executing methods remotely or distributed in context of a
pure JavaScript environment need to be found. The present framework can
provide a basis for research in this direction.

86

5.4. PERSPECTIVES AND PROBLEMS

As a first step towards more security and data consistency between client
and server, the communication between both parties could implement an
object capability model as described in [Clo08]. During an early phase of
this thesis’ design a different approach to addressing model classes and
instances on the server raised questions on how to authenticate access to
members of a secured collection in a context-free way. Among the devised
solutions one was modeled after the object capability model. The entire
addressing approach was replaced by something simpler, however, because
an implementation would have been beyond the scope of this thesis.

The design in this thesis could provide the basis to support a consumer-
producer style processing model for web applications. In such an environ-
ment, server and client would work together on an object, each in a way
that is not possible on the remote end. The server might perform database
operations while the client lets the user interact with the object. Blocking
calls or promises could be used to suspend execution on one side of the com-
munication until the other end can provide input that allows computation
to proceed. For example, a function could be called on the server to fetch
information from the database. The server might recognize that not enough
information was provided to fulfill the request and return a promise to the
client that upon access will spawn a dialog asking for more information,
send this information back to the server, complete the request there, and
return with a new Promise that can be fulfilled. An architecture directed
towards asynchronous messaging between event loops that could serve as
orientation and provide underlying mechanisms has been implemented in
Waterken with the server-side of the stack written in Java [Clo09].

Slightly related, another measure to improve communication between server
and client may lie in remoting closures while keeping the traditional style
of the client making single request after request to the server:
Instead of manually maintaining a session on both ends of the communica-
tion, and accessing it explicitly on the server, the session could be moved
into a closure in which functions on the server are executed. A function, re-
motely run on the server, would produce a return value and operate on the
closure for side effects. The modified closure and the return value would then
be returned to the client. There are some caveats to this model that need
to be solved: Within the limits of the interpreter, explicit access to a func-
tion’s closure is not possible and sending a closure of potentially unknown
size is infeasible for remote connections. The closure might also contain
information that explicitly may not be exposed. Therefore, a “closure-like”
object would have to be constructed instead, providing a context in which
remote execution of the function happens. Ideally this construction could
be automated.

87

5.4. PERSPECTIVES AND PROBLEMS

88

6
Chapter 6

Conclusion

Developing and implementing a framework design on the basis of software
and technologies that are still in very active development, in a field that is
currently undergoing rapid changes has proven challenging.

In this thesis, some of the ideas that are currently discussed in the web de-
velopment community have been combined to a new approach. The distinc-
tive property of that approach is that it does not hide its concepts behind
overly thick and complicated layers of abstractions, adapters and libraries,
but that it tries to implement them on the mechanisms and technologies
available on the web.

The way of developing software with leaner stacks that embrace web stan-
dards has proven useful in practice and is used successfully by thousands
of developers everyday.

The combination of web standards with a single-language environment for
creating software is promising and can open up new perspectives for web
application development.

89

90

A
Appendix A

Kupo Information

This chapter contains information on where to download, how to install,
and how to run Kupo and its tests.

A.1 Requirements

Kupo should run on all Unix systems. It was tested with Mac OS X 10.5.7
and Debian 5.0. To use Kupo, you need to have a running MongoDB
Server on your machine. Binaries for many operating systems are available
at http://www.mongodb.org/display/DOCS/Downloads You also should
have git1 installed to fetch Kupo from its repository.

A.2 Installation

To install Kupo, just place the source directory somewhere and make sure
the correct versions of the Jack2 and Narwhal3 frameworks are in place
under the packages directory.

The best way to install Kupo is to clone the repository using git.

1. git clone git://github.com/janv/kupo.git

2. cd kupo

3. git submodule update --init

1http://www.git-scm.com/
2http://github.com/janv/jack/master
3http://github.com/janv/narwhal/master

91

http://www.mongodb.org/display/DOCS/Downloads
http://www.git-scm.com/
http://github.com/janv/jack/master
http://github.com/janv/narwhal/master

A.3. STARTUP

The URLs for the Jack and Narwhal repositories given here point to clones
of the respective repositories, created to be in sync with the Kupo reposi-
tory. The original repositories can be found at [jac09, nar09].

A.3 Startup

To start Kupo, MongoDB needs to run first. Start the MongoDB server with
"mongod --dbpath <path_to_kupo>/db run". This causes MongoDB to
use the db subdirectory of Kupo to store its data files.

Afterwards, execute "packages/narwhal/bin/narwhal ." in the kupo di-
rectory. Alternatively the provided startup script ./start can be used.

Listing A.1 The Kupo directory layout
. - The application directory
jackconfig.js - Initialization file for Jack
main.js - Initialization file for Narwhal
package.json - Package descriptor for Narwhal
start - Startup shellscript
app/ - Contains application specific

controller/ models and controllers
model/

db/ - Can be used to store the database
packages/ - Packages required by the app

jack/ - Jack framework
kupo/ - The Kupo framework as a Narwhal package

jars/ - Contains the mongo-java-driver jar
lib/kupo/ - The actual modules
tests/

narwhal/ - Narwhal framework
public/ - Publicly accessible static content

clientjs/ - Client-side JavaScript code

The Kupo repository is laid out as a Narwhal package. The root directory
contains the application that is developed (a sample application at the
moment). All required frameworks are located as packages in the packages
directory, so they are automatically discovered by narwhal. These packages
are Jack, Narwhal itself and the Kupo framework files.

The file main.js is executed by narwhal to run the package. Main.js runs
the jackup executable of the Jack framework, passing it the current direc-
tory as a Jack application. Jack applications are initialized using the file
jackconfig.js in which the app (a simple function adhering to the Jack
protocol) is exported through the exports.app variable.

92

A.4. TESTS

A.4 Tests

The Kupo release includes unit tests for some of its components. To run
them you need to:

1. Start MongoDB

2. Change to <path_to_kupo>/packages/kupo/tests

3. Run "../../narwhal/bin/narwhal ."

A.5 License

Kupo is licensed under the MIT License

Copyright c© 2009 Jan Varwig

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

The software is provided“as is”, without warranty of any kind,
express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-
infringement. In no event shall the authors or copyright hold-
ers be liable for any claim, damages or other liability, whether
in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other
dealings in the software.

93

A.5. LICENSE

94

Bibliography

[10g09a] Mongo Concepts and Terminology, 10gen, June 2009. [Online].
Available: http://www.mongodb.org/pages/viewpage.action?
pageId=131424

[10g09b] (2009, June) Mongodb. Open Source Project. 10gen. [Online].
Available: http://www.mongodb.org/

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services:
concepts, architectures and applications. Springer, 2004.

[AK09a] I. Awad and K. Kowal, “Module system for es-harmony,”
2009. [Online]. Available: https://docs.google.com/Edit?tab=
view&docid=dfgxb7gk 34gpk37z9v

[AK09b] I. Awad and K. Kowal, “Modules,” Presentation Slides, 2009.
[Online]. Available: http://docs.google.com/Presentation?id=
dcd8d5dk 0cs639jg8

[Apa09a] (2009, July) Apache cocoon. Open Source Project. Apache
Foundation. Version 2.1. [Online]. Available: http://cocoon.
apache.org/2.1/index.html

[Apa09b] (2009, June) Couchdb. Open Source Project. Apache Founda-
tion. [Online]. Available: http://couchdb.apache.org/

[Apa09c] Introduction to CouchDB views, Apache Foundation, June
2009. [Online]. Available: http://wiki.apache.org/couchdb/
Introduction to CouchDB views?action=recall&rev=19

[App05] Dynamic HTML and XML: The XMLHttpRequest Object, Ap-
ple Inc., June 2005. [Online]. Available: http://developer.
apple.com/internet/webcontent/xmlhttpreq.html

[App09] Apple Safari 150 Features, Apple Inc., June 2009. [Online].
Available: http://www.apple.com/safari/features.html

[Apt09] (2009, June) Jaxer. Open Source Project. Aptana Inc. [Online].
Available: http://www.aptana.com/jaxer

[Ark07] A. Arkin, “Read consistency: Dumb databases, smart services,”
September 2007. [Online]. Available: http://blog.labnotes.org/
2007/09/20/read-consistency-dumb-databases-smart-services/

95

http://www.mongodb.org/pages/viewpage.action?pageId=131424
http://www.mongodb.org/pages/viewpage.action?pageId=131424
http://www.mongodb.org/
https://docs.google.com/Edit?tab=view&docid=dfgxb7gk_34gpk37z9v
https://docs.google.com/Edit?tab=view&docid=dfgxb7gk_34gpk37z9v
http://docs.google.com/Presentation?id=dcd8d5dk_0cs639jg8
http://docs.google.com/Presentation?id=dcd8d5dk_0cs639jg8
http://cocoon.apache.org/2.1/index.html
http://cocoon.apache.org/2.1/index.html
http://couchdb.apache.org/
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views?action=recall&rev=19
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views?action=recall&rev=19
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://www.apple.com/safari/features.html
http://www.aptana.com/jaxer
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/

Bibliography

[Atw08] J. Atwood, “Maybe normalizing isn’t normal,” July 2008. [On-
line]. Available: http://www.codinghorror.com/blog/archives/
001152.html

[Awa] I. Awad. Message on serverjs mailing list from mon, 2 feb
2009. eMail. [Online]. Available: http://groups.google.com/
group/serverjs/msg/752ab381d9eb5194

[Bar01] G. Barish, Building scalable and high-performance Java Web
applications using J2EE technology. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[BGP00] L. Baresi, F. Garzotto, and P. Paolini, “From web sites to
web applications: New issues for conceptual modeling,” in ER
’00: Proceedings of the Workshops on Conceptual Modeling Ap-
proaches for E-Business and The World Wide Web and Con-
ceptual Modeling. London, UK: Springer, 2000, pp. 89–100.

[BLFN96] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen, Hypertext
Transfer Protocol – HTTP/1.0, Internet Draft, February 1996,
in W3C archives. [Online]. Available: http://www.w3.org/
Protocols/HTTP/1.0/spec.html

[Boy09] N. Boyd, Scripting Java, Mozilla Foundation, July 2009.
[Online]. Available: http://www.mozilla.org/rhino/scriptjava.
html

[Bur87] S. Burbeck, Applications Programming in Smalltalk-80: How to
use Model-View-Controller (MVC), 1987. [Online]. Available:
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[Cap08] C. Cap, “Suche nach objekten,” Presentation Slides, May 2008.

[Cha01] S. Champeon, “Javascript: How did we get here?” April
2001. [Online]. Available: http://www.oreillynet.com/pub/a/
javascript/2001/04/06/js history.html

[Che76] P. P.-S. Chen,“The entity-relationship model—toward a unified
view of data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–
36, 1976.

[Clo08] T. Close, “Web-key: Mashing with permission,” in WEB 2.0
SECURITY AND PRIVACY 2008, 2008. [Online]. Available:
http://w2spconf.com/2008/papers/s4p2.pdf

[Clo09] T. Close. (2009, July) Waterken. Open Source Project.
[Online]. Available: http://waterken.sourceforge.net/

[CNW01] F. Curbera, W. A. Nagy, and S. Weerawarana, “Web services:
Why and how,” in In OOPSLA 2001 Workshop on Object-
Oriented Web Services. ACM, 2001.

96

http://www.codinghorror.com/blog/archives/001152.html
http://www.codinghorror.com/blog/archives/001152.html
http://groups.google.com/group/serverjs/msg/752ab381d9eb5194
http://groups.google.com/group/serverjs/msg/752ab381d9eb5194
http://www.w3.org/Protocols/HTTP/1.0/spec.html
http://www.w3.org/Protocols/HTTP/1.0/spec.html
http://www.mozilla.org/rhino/scriptjava.html
http://www.mozilla.org/rhino/scriptjava.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://w2spconf.com/2008/papers/s4p2.pdf
http://waterken.sourceforge.net/

Bibliography

[Cro06] D. Crockford, “The application/json media type for javascript
object notation (json),” IETF RFC 4627, July 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4627.txt?number=4627

[Cro08] D. Crockford, JavaScript: The Good Parts. O’Reilly Media,
Inc., 2008.

[Dan09] K. Dangoor, “What server side javascript needs,”January 2009.
[Online]. Available: http://www.blueskyonmars.com/2009/01/
29/what-server-side-javascript-needs/

[DG08] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, 2008.

[DGHK05] L. Davis, R. Gamble, M. Hepner, and M. Kelkar, “Toward for-
malizing service integration glue code,” in Services Computing,
2005 IEEE International Conference on, vol. 1, July 2005, pp.
165–172 vol.1.

[Dij82] E. W. Dijkstra, Selected writings on Computing: A Personal
Perspective. New York, NY, USA: Springer-Verlag, 1982, pp.
60–66.

[Do07] C. Do. (2007, June) Seattle conference on scalability: Youtube
scalability. Google Tech Talk. [Online]. Available: http:
//video.google.com/videoplay?docid=-6304964351441328559

[Doj09a] JSONQuery - Persevere Online Documentation, Dojo Founda-
tion, June 2009. [Online]. Available: http://docs.persvr.org/
documentation/jsonquery

[Doj09b] REST - Persevere Online Documentation, Dojo Founda-
tion, July 2009. [Online]. Available: http://docs.persvr.
org/documentation/http-rest

[Dum05] E. Dumbill, “Ruby on rails: An interview with
david heinemeier hansson,” August 2005. [Online]. Avail-
able: http://www.oreillynet.com/pub/a/network/2005/08/30/
ruby-rails-david-heinemeier-hansson.html

[ecm99] ECMA-262: ECMAScript Language Specification, 3rd ed.
Geneva, Switzerland: ECMA (European Association for Stan-
dardizing Information and Communication Systems), Decem-
ber 1999. [Online]. Available: http://www.ecma-international.
org/publications/standards/Ecma-262.htm

[ecm09] ECMA-262, 5th Edition Candidate Draft April 2009. ECMA
(European Association for Standardizing Information and
Communication Systems), April 2009. [Online]. Avail-
able: http://www.ecma-international.org/publications/files/
drafts/tc39-2009-025.pdf

97

http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/
http://video.google.com/videoplay?docid=-6304964351441328559
http://video.google.com/videoplay?docid=-6304964351441328559
http://docs.persvr.org/documentation/jsonquery
http://docs.persvr.org/documentation/jsonquery
http://docs.persvr.org/documentation/http-rest
http://docs.persvr.org/documentation/http-rest
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/files/drafts/tc39-2009-025.pdf
http://www.ecma-international.org/publications/files/drafts/tc39-2009-025.pdf

Bibliography

[Eic08a] B. Eich, “Ecmascript harmony,” eMail, Mozilla Foundation,
August 2008. [Online]. Available: https://mail.mozilla.org/
pipermail/es-discuss/2008-August/006837.html

[Eic08b] B. Eich, “Tracemonkey: Javascript lightspeed,” August 2008.
[Online]. Available: http://weblogs.mozillazine.org/roadmap/
archives/2008/08/tracemonkey javascript lightsp.html

[Erl05] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[Esp08] D. Esposito, Programming Microsoft ASP.NET 3.5. Redmond,
WA, USA: Microsoft Press, 2008.

[Fie00] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, IRVINE, 2000. [Online]. Available:
http://www.ics.uci.edu/˜fielding/pubs/dissertation/top.htm

[Fow97] M. Fowler, “Dealing with properties,” 1997. [Online]. Available:
http://martinfowler.com/apsupp/properties.pdf

[Fow02] M. Fowler, Patterns of Enterprise Application Architecture.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[Gar05] J. J. Garrett, “Ajax: A new approach to web applications,”
February 2005. [Online]. Available: http://www.adaptivepath.
com/ideas/essays/archives/000385.php

[GF06] A. Gal and M. Franz, “Incremental dynamic code generation
with trace trees,” Donald Bren School of Information and
Computer Science, University of California, Irvine, Tech.
Rep. 06-16, 2006. [Online]. Available: http://www.ics.uci.edu/
˜franz/Site/pubs-pdf/ICS-TR-06-16.pdf

[Gol09] J. Golick. (2009, July) Resource controller. Open Source
Project. [Online]. Available: http://github.com/giraffesoft/
resource controller/

[Goo09a] Product Overview - Google Web Toolkit, Google, July 2009. [On-
line]. Available: http://code.google.com/webtoolkit/overview.
html

[Goo09b] V8 Design Elements, Google, July 2009. [Online]. Available:
http://code.google.com/apis/v8/design.html

[Goo09c] (2009, July) V8 javascript engine. Open Source Project.
Google. [Online]. Available: http://code.google.com/p/v8/

98

https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
http://weblogs.mozillazine.org/roadmap/archives/2008/08/tracemonkey_javascript_lightsp.html
http://weblogs.mozillazine.org/roadmap/archives/2008/08/tracemonkey_javascript_lightsp.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://martinfowler.com/apsupp/properties.pdf
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-16.pdf
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-16.pdf
http://github.com/giraffesoft/resource_controller/
http://github.com/giraffesoft/resource_controller/
http://code.google.com/webtoolkit/overview.html
http://code.google.com/webtoolkit/overview.html
http://code.google.com/apis/v8/design.html
http://code.google.com/p/v8/

Bibliography

[Ham08] N. Hamilton, “The a-z of programming lan-
guages: Javascript,” July 2008. [Online]. Avail-
able: http://www.computerworld.com.au/article/255293/-z
programming languages javascript?fp=4194304&fpid=1

[Han09] D. H. Hansson, “Discovering a world of resources on rails,”
Presentation Slides, June 2009. [Online]. Available: http:
//media.rubyonrails.org/presentations/worldofresources.pdf

[HB04] H. Haas and A. Brown. (2004, February) Web services
glossary. W3C Web Services Architecture Working Group.
W3C Working Group Note 11. [Online]. Available: http:
//www.w3.org/TR/ws-gloss/

[Hel09] HopObject - Helma Javascript Reference, Helma, July 2009.
[Online]. Available: http://helma.server-side-javascript.org/
reference/HopObject.html

[IBNW09] C. Ireland, D. Bowers, M. Newton, and K. Waugh, “A classifi-
cation of object-relational impedance mismatch,” in DBKDA
’09: Proceedings of the 2009 First International Conference
on Advances in Databases, Knowledge, and Data Applications.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 36–
43.

[jac09] (2009, July) Jsgi & jack. Open Source Project. [Online].
Available: http://jackjs.org

[Job95] S. P. Jobs, “The future of objects - openstep day at object
world 1995,” Keynote presentation, NeXT Computer Inc.,
August 1995. [Online]. Available: http://video.google.com/
videoplay?docid=5888348343612063265

[Jon09] R. Jones, “Anti-rdbms: A list of distributed key-value stores,”
January 2009. [Online]. Available: http://www.metabrew.com/
article/anti-rdbms-a-list-of-distributed-key-value-stores/

[jsone] (June, 2009) Json-rpc project homepage. [Online]. Available:
http://json-rpc.org/

[jun09] Trimpath Junction: Runtime Environments, July 2009. [On-
line]. Available: http://trimpath.googlecode.com/svn/trunk/
junction docs/files/junction doc run-txt.html

[KBA+09] G. King, C. Bauer, M. R. Andersen, E. Bernard, and
S. Ebersole, Hibernate Reference Documentation, Red Hat
Middleware, LLC., June 2009, version 3.3.2.GA. [On-
line]. Available: http://docs.jboss.org/hibernate/stable/core/
reference/en/html/session-configuration.html

[Koc09] P.-P. Koch, “Compatibility master table,” July 2009. [Online].
Available: http://www.quirksmode.org/compatibility.html

99

http://www.computerworld.com.au/article/255293/-z_programming_languages_javascript?fp=4194304&fpid=1
http://www.computerworld.com.au/article/255293/-z_programming_languages_javascript?fp=4194304&fpid=1
http://media.rubyonrails.org/presentations/worldofresources.pdf
http://media.rubyonrails.org/presentations/worldofresources.pdf
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://helma.server-side-javascript.org/reference/HopObject.html
http://helma.server-side-javascript.org/reference/HopObject.html
http://jackjs.org
http://video.google.com/videoplay?docid=5888348343612063265
http://video.google.com/videoplay?docid=5888348343612063265
http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-stores/
http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-stores/
http://json-rpc.org/
http://trimpath.googlecode.com/svn/trunk/junction_docs/files/junction_doc_run-txt.html
http://trimpath.googlecode.com/svn/trunk/junction_docs/files/junction_doc_run-txt.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/session-configuration.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/session-configuration.html
http://www.quirksmode.org/compatibility.html

Bibliography

[Koz09] M. Koziarski, “Riding rails: Nested model forms,” January
2009. [Online]. Available: http://weblog.rubyonrails.org/2009/
1/26/nested-model-forms

[LDJ01] S. S. Laurent, E. Dumbill, and J. Johnston, Programming Web
Services with XML-RPC. Sebastopol, CA, USA: O’Reilly &
Associates, Inc., 2001.

[Lho06a] R. Lhotka, Expert C# 2005 Business Objects, 2nd ed. Berkely,
CA, USA: Apress, 2006.

[Lho06b] R. Lhotka, “Should validation be in the
ui or in business objects,” March 2006.
[Online]. Available: http://www.lhotka.net/WeBlog/
ShouldValidationBeInTheUIOrInBusinessObjects.aspx

[Lin04] T. W. Ling, Semistructured Database Design (Web Information
Systems Engineering and Internet Technologie). Santa Clara,
CA, USA: Springer-Verlag TELOS, 2004.

[ME92] P. Mishra and M. H. Eich, “Join processing in relational
databases,” ACM Comput. Surv., vol. 24, no. 1, pp. 63–113,
1992.

[Moz05] XML Extras, Mozilla Foundation, November 2005. [Online].
Available: https://developer.mozilla.org/index.php?title=en/
XML Extras&revision=1

[Moz09a] JavaScript:Tracemonkey, Mozilla Foundation, July 2009.
[Online]. Available: https://wiki.mozilla.org/JavaScript:
TraceMonkey

[Moz09b] Rhino history, Mozilla Foundation, July 2009. [Online].
Available: http://www.mozilla.org/rhino/history.html

[nar09] (2009, July) Narwhal. Open Source Project. [Online]. Available:
http://narwhaljs.org

[New06] T. Neward, “The vietnam of computer science,” June 26 2006.
[Online]. Available: http://blogs.tedneward.com/2006/06/26/
The+Vietnam+Of+Computer+Science.aspx

[Ope09] Opera version history, Opera Software ASA, July 2009. [On-
line]. Available: http://www.opera.com/docs/history/#facts

[O’R05] T. O’Reilly,“What is web 2.0,”September 2005. [Online]. Avail-
able: http://oreilly.com/web2/archive/what-is-web-20.html

[O’R06] T. O’Reilly, “Database war stories 3: Flickr,” April
2006. [Online]. Available: http://radar.oreilly.com/2006/04/
database-war-stories-3-flickr.html

100

http://weblog.rubyonrails.org/2009/1/26/nested-model-forms
http://weblog.rubyonrails.org/2009/1/26/nested-model-forms
http://www.lhotka.net/WeBlog/ShouldValidationBeInTheUIOrInBusinessObjects.aspx
http://www.lhotka.net/WeBlog/ShouldValidationBeInTheUIOrInBusinessObjects.aspx
https://developer.mozilla.org/index.php?title=en/XML_Extras&revision=1
https://developer.mozilla.org/index.php?title=en/XML_Extras&revision=1
https://wiki.mozilla.org/JavaScript:TraceMonkey
https://wiki.mozilla.org/JavaScript:TraceMonkey
http://www.mozilla.org/rhino/history.html
http://narwhaljs.org
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://www.opera.com/docs/history/#facts
http://oreilly.com/web2/archive/what-is-web-20.html
http://radar.oreilly.com/2006/04/database-war-stories-3-flickr.html
http://radar.oreilly.com/2006/04/database-war-stories-3-flickr.html

Bibliography

[Rag93] D. Raggett, A Review of the HTML+ Document Format,
Internet Draft, 1993, in the W3C archives. [Online]. Available:
http://www.w3.org/MarkUp/htmlplus paper/htmlplus.html

[rai06] (2006, May) Rails-inspired php frameworks. [On-
line]. Available: http://www.h3rald.com/articles/view/
rails-inspired-php-frameworks

[RG02] R. Ramakrishnan and J. Gehrke, Database Management Sys-
tems, 3rd ed. McGraw-Hill Science/Engineering/Math, August
2002, ch. 6.

[RR07] L. Richardson and S. Ruby, Restful web services. O’Reilly,
2007.

[Ser09] ServerJS/Modules/SecurableModules, ServerJS work-
ing group, July 2009. [Online]. Avail-
able: https://wiki.mozilla.org/index.php?title=ServerJS/
Modules/SecurableModules&oldid=150641

[SMA+07] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland, “The end of an architectural era:
(it’s time for a complete rewrite),” in VLDB ’07: Proceedings
of the 33rd international conference on Very large data bases.
VLDB Endowment, 2007, pp. 1150–1160.

[Sta08] M. Stachowiak, “Introducing squirrelfish extreme,” Septem-
ber 2008. [Online]. Available: http://webkit.org/blog/214/
introducing-squirrelfish-extreme/

[Sun08] The Java EE 5 Tutorial, Sun Microsystems, October 2008. [On-
line]. Available: http://java.sun.com/javaee/5/docs/tutorial/
doc/bnadp.html

[Sun09] An Overview of Project Phobos, Sun Microsystems, July 2009.
[Online]. Available: https://phobos.dev.java.net/overview.html

[THB+06] D. Thomas, D. Hansson, L. Breedt, M. Clark, J. D. David-
son, J. Gehtland, and A. Schwarz, Agile Web Development with
Rails. Pragmatic Bookshelf, 2006.

[vGB01] J. van Gurp and J. Bosch, “Design, implementation and
evolution of object oriented frameworks: concepts and
guidelines.” Softw., Pract. Exper., vol. 31, no. 3, pp. 277–300,
2001. [Online]. Available: http://www.rug.nl/informatica/
onderzoek/programmas/softwareengineering/publication files/
DesignImplementationandEvolutionofObjectOrientedFrameworks.
pdf

[W3C92] HTML Tags, W3C, November 1992. [Online].
Available: http://www.w3.org/History/19921103-hypertext/
hypertext/WWW/MarkUp/Tags.html

101

http://www.w3.org/MarkUp/htmlplus_paper/htmlplus.html
http://www.h3rald.com/articles/view/rails-inspired-php-frameworks
http://www.h3rald.com/articles/view/rails-inspired-php-frameworks
https://wiki.mozilla.org/index.php?title=ServerJS/Modules/SecurableModules&oldid=150641
https://wiki.mozilla.org/index.php?title=ServerJS/Modules/SecurableModules&oldid=150641
http://webkit.org/blog/214/introducing-squirrelfish-extreme/
http://webkit.org/blog/214/introducing-squirrelfish-extreme/
http://java.sun.com/javaee/5/docs/tutorial/doc/bnadp.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnadp.html
https://phobos.dev.java.net/overview.html
http://www.rug.nl/informatica/onderzoek/programmas/softwareengineering/publication_files/DesignImplementationandEvolutionofObjectOrientedFrameworks.pdf
http://www.rug.nl/informatica/onderzoek/programmas/softwareengineering/publication_files/DesignImplementationandEvolutionofObjectOrientedFrameworks.pdf
http://www.rug.nl/informatica/onderzoek/programmas/softwareengineering/publication_files/DesignImplementationandEvolutionofObjectOrientedFrameworks.pdf
http://www.rug.nl/informatica/onderzoek/programmas/softwareengineering/publication_files/DesignImplementationandEvolutionofObjectOrientedFrameworks.pdf
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html

Bibliography

[W3C99] CGI: Common Gateway Interface, W3C, October 1999. [On-
line]. Available: http://www.w3.org/CGI/

[Yen93] S. P. Yen, “University of minnesota gopher software
licensing policy,” eMail, March 1993. [Online]. Avail-
able: http://www.nic.funet.fi/pub/vms/networking/gopher/
gopher-software-licensing-policy.ancient

[YLBM08] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying
and managing web services: issues, solutions, and directions,”
The VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008.

[ZRN08] N. Zang, M. B. Rosson, and V. Nasser, “Mashups: who? what?
why?”in CHI ’08: CHI ’08 extended abstracts on Human factors
in computing systems. New York, NY, USA: ACM, 2008, pp.
3171–3176.

[Zyp08a] K. Zyp, “Ajax performance analysis,” April 2008. [Online].
Available: http://www.ibm.com/developerworks/web/library/
wa-aj-perform/

[Zyp08b] K. Zyp, “Json referencing in dojo,” June 2008. [On-
line]. Available: http://www.sitepen.com/blog/2008/06/17/
json-referencing-in-dojo/

Note

As explained in the preface, due to the subject of this thesis, a lot of the ref-
erenced sources are not officially published papers or books but articles from
weblogs, discussion forums, knowledge bases or online documentations.

Sources that are in danger of disappearing from the web are included on
the DVD-ROM attached to this thesis in HTML or PDF format.

102

http://www.w3.org/CGI/
http://www.nic.funet.fi/pub/vms/networking/gopher/gopher-software-licensing-policy.ancient
http://www.nic.funet.fi/pub/vms/networking/gopher/gopher-software-licensing-policy.ancient
http://www.ibm.com/developerworks/web/library/wa-aj-perform/
http://www.ibm.com/developerworks/web/library/wa-aj-perform/
http://www.sitepen.com/blog/2008/06/17/json-referencing-in-dojo/
http://www.sitepen.com/blog/2008/06/17/json-referencing-in-dojo/

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter aus-
schließlicher Verwendung der angegebenen Literatur und Hilfsmittel erstellt
zu haben.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen
Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

—————————————————————

Dortmund, 20. Juli 2009

103

	1 Motivation
	1.1 A Short History of the Web
	1.2 Current Problems in Web Development
	1.2.1 Heterogenous Languages
	1.2.2 Redundancy in Code
	1.2.3 Glue Code
	1.2.4 Object-Relational Mapping

	1.3 Use Cases
	1.3.1 Model Validation
	1.3.2 Data Transformation
	1.3.3 Exposure of Objects Through APIs
	1.3.4 Dynamic Object Properties
	1.3.5 Storage and Retrieval of Compound Objects

	1.4 Goals
	1.4.1 A Single Language
	1.4.2 Code Reuse between Server and Client
	1.4.3 Elimination of Glue Code
	1.4.4 Tight Integration of a JSON Database

	1.5 Existing Single-Language Frameworks
	1.6 Key Ideas
	1.6.1 A Design Based on JavaScript
	1.6.2 Key Ideas Put to Work

	2 Background
	2.1 Existing Approaches to Web Frameworks
	2.1.1 Request-/Action-Based MVC
	2.1.2 Component Based
	2.1.3 Free Form

	2.2 Web-Applications vs. Web-Services
	2.3 JavaScript
	2.4 Changes in Recent Years
	2.4.1 Web 2.0 and AJAX
	2.4.2 JavaScript Engines
	2.4.3 Approaches to Database Systems

	2.5 Protocols for Web Services
	2.5.1 SOAP
	2.5.2 REST
	2.5.3 XML-RPC / JSON-RPC

	2.6 Existing JavaScript Based Frameworks
	2.6.1 Helma
	2.6.2 Persevere
	2.6.3 Aptana Jaxer
	2.6.4 Others

	3 Design
	3.1 Key Ideas
	3.1.1 Avoiding Data Transformation and Lightweight Creation of Models
	3.1.2 A Thin Controller and Uniform Models
	3.1.3 Code Sharing, Code Splitting and Delegation

	3.2 Object Infrastructure Design
	3.2.1 Controllers
	3.2.2 Models

	4 Implementation
	4.1 Choice of Back-End Software
	4.1.1 JSON Databases Compared
	4.1.2 The ServerJS Group
	4.1.3 JavaScript Engines Compared

	4.2 Client-Server Scenarios
	4.2.1 Server-side
	4.2.2 Client-Side
	4.2.3 Unimplemented Scenarios

	4.3 Implementation of the Server-side
	4.3.1 The Underlying Platform: Rhino, Narwhal and Jack
	4.3.2 Dispatcher
	4.3.3 Models
	4.3.4 Controllers

	4.4 Implementation of the Client-side
	4.4.1 Client-side Module Loading
	4.4.2 Splitting
	4.4.3 Support for Nested Structures
	4.4.4 Automated Delegation
	4.4.5 Example Application

	5 Evaluation
	5.1 Goals and Design
	5.1.1 A Single Language
	5.1.2 Code-Reuse Between Server and Client
	5.1.3 Elimination of Glue Code
	5.1.4 Tight Integration of a JSON Database

	5.2 Use Cases Revisited
	5.2.1 Model Validation
	5.2.2 Data Transformation
	5.2.3 Exposure of Objects Through APIs
	5.2.4 Dynamic Object Properties
	5.2.5 Storage and Retrieval of Compound Objects

	5.3 General Architecture Evaluation
	5.4 Perspectives and Problems
	5.4.1 Remaining Tasks
	5.4.2 Future Work

	6 Conclusion
	A Kupo Information
	A.1 Requirements
	A.2 Installation
	A.3 Startup
	A.4 Tests
	A.5 License

	Bibliography

